854 resultados para Representation. Rationalities. Race. Recognition. Culture. Classification.Ontology. Fetish.
Resumo:
The ontological approach to structuring knowledge and the description of data domain of knowledge is considered. It is described tool ontology-controlled complex for research and developments of sensor systems. Some approaches to solution most frequently meeting tasks are considered for creation of the recognition procedures.
Resumo:
This paper deals with the classification of news items in ePaper, a prototype system of a future personalized newspaper service on a mobile reading device. The ePaper system aggregates news items from various news providers and delivers to each subscribed user (reader) a personalized electronic newspaper, utilizing content-based and collaborative filtering methods. The ePaper can also provide users "standard" (i.e., not personalized) editions of selected newspapers, as well as browsing capabilities in the repository of news items. This paper concentrates on the automatic classification of incoming news using hierarchical news ontology. Based on this classification on one hand, and on the users' profiles on the other hand, the personalization engine of the system is able to provide a personalized paper to each user onto her mobile reading device.
Resumo:
A novel approach of normal ECG recognition based on scale-space signal representation is proposed. The approach utilizes curvature scale-space signal representation used to match visual objects shapes previously and dynamic programming algorithm for matching CSS representations of ECG signals. Extraction and matching processes are fast and experimental results show that the approach is quite robust for preliminary normal ECG recognition.
Resumo:
The paper presents a short review of some systems for program transformations performed on the basis of the internal intermediate representations of these programs. Many systems try to support several languages of representation of the source texts of programs and solve the task of their translation into the internal representation. This task is still a challenge as it is effort-consuming. To reduce the effort, different systems of translator construction, ready compilers with ready grammars of outside designers are used. Though this approach saves the effort, it has its drawbacks and constraints. The paper presents the general idea of using the mapping approach to solve the task within the framework of program transformations and overcome the disadvantages of the existing systems. The paper demonstrates a fragment of the ontology model of high-level languages mappings onto the single representation and gives the example of how the description of (a fragment) a particular mapping is represented in accordance with the ontology model.
Resumo:
Clinical decision support systems (CDSSs) often base their knowledge and advice on human expertise. Knowledge representation needs to be in a format that can be easily understood by human users as well as supporting ongoing knowledge engineering, including evolution and consistency of knowledge. This paper reports on the development of an ontology specification for managing knowledge engineering in a CDSS for assessing and managing risks associated with mental-health problems. The Galatean Risk and Safety Tool, GRiST, represents mental-health expertise in the form of a psychological model of classification. The hierarchical structure was directly represented in the machine using an XML document. Functionality of the model and knowledge management were controlled using attributes in the XML nodes, with an accompanying paper manual for specifying how end-user tools should behave when interfacing with the XML. This paper explains the advantages of using the web-ontology language, OWL, as the specification, details some of the issues and problems encountered in translating the psychological model to OWL, and shows how OWL benefits knowledge engineering. The conclusions are that OWL can have an important role in managing complex knowledge domains for systems based on human expertise without impeding the end-users' understanding of the knowledge base. The generic classification model underpinning GRiST makes it applicable to many decision domains and the accompanying OWL specification facilitates its implementation.
Resumo:
Peer reviewed
Resumo:
This dissertation focuses on two vital challenges in relation to whale acoustic signals: detection and classification.
In detection, we evaluated the influence of the uncertain ocean environment on the spectrogram-based detector, and derived the likelihood ratio of the proposed Short Time Fourier Transform detector. Experimental results showed that the proposed detector outperforms detectors based on the spectrogram. The proposed detector is more sensitive to environmental changes because it includes phase information.
In classification, our focus is on finding a robust and sparse representation of whale vocalizations. Because whale vocalizations can be modeled as polynomial phase signals, we can represent the whale calls by their polynomial phase coefficients. In this dissertation, we used the Weyl transform to capture chirp rate information, and used a two dimensional feature set to represent whale vocalizations globally. Experimental results showed that our Weyl feature set outperforms chirplet coefficients and MFCC (Mel Frequency Cepstral Coefficients) when applied to our collected data.
Since whale vocalizations can be represented by polynomial phase coefficients, it is plausible that the signals lie on a manifold parameterized by these coefficients. We also studied the intrinsic structure of high dimensional whale data by exploiting its geometry. Experimental results showed that nonlinear mappings such as Laplacian Eigenmap and ISOMAP outperform linear mappings such as PCA and MDS, suggesting that the whale acoustic data is nonlinear.
We also explored deep learning algorithms on whale acoustic data. We built each layer as convolutions with either a PCA filter bank (PCANet) or a DCT filter bank (DCTNet). With the DCT filter bank, each layer has different a time-frequency scale representation, and from this, one can extract different physical information. Experimental results showed that our PCANet and DCTNet achieve high classification rate on the whale vocalization data set. The word error rate of the DCTNet feature is similar to the MFSC in speech recognition tasks, suggesting that the convolutional network is able to reveal acoustic content of speech signals.
Resumo:
Background and aims: Machine learning techniques for the text mining of cancer-related clinical documents have not been sufficiently explored. Here some techniques are presented for the pre-processing of free-text breast cancer pathology reports, with the aim of facilitating the extraction of information relevant to cancer staging.
Materials and methods: The first technique was implemented using the freely available software RapidMiner to classify the reports according to their general layout: ‘semi-structured’ and ‘unstructured’. The second technique was developed using the open source language engineering framework GATE and aimed at the prediction of chunks of the report text containing information pertaining to the cancer morphology, the tumour size, its hormone receptor status and the number of positive nodes. The classifiers were trained and tested respectively on sets of 635 and 163 manually classified or annotated reports, from the Northern Ireland Cancer Registry.
Results: The best result of 99.4% accuracy – which included only one semi-structured report predicted as unstructured – was produced by the layout classifier with the k nearest algorithm, using the binary term occurrence word vector type with stopword filter and pruning. For chunk recognition, the best results were found using the PAUM algorithm with the same parameters for all cases, except for the prediction of chunks containing cancer morphology. For semi-structured reports the performance ranged from 0.97 to 0.94 and from 0.92 to 0.83 in precision and recall, while for unstructured reports performance ranged from 0.91 to 0.64 and from 0.68 to 0.41 in precision and recall. Poor results were found when the classifier was trained on semi-structured reports but tested on unstructured.
Conclusions: These results show that it is possible and beneficial to predict the layout of reports and that the accuracy of prediction of which segments of a report may contain certain information is sensitive to the report layout and the type of information sought.
Resumo:
[EN]In face recognition, where high-dimensional representation spaces are generally used, it is very important to take advantage of all the available information. In particular, many labelled facial images will be accumulated while the recognition system is functioning, and due to practical reasons some of them are often discarded. In this paper, we propose an algorithm for using this information. The algorithm has the fundamental characteristic of being incremental. On the other hand, the algorithm makes use of a combination of classification results for the images in the input sequence. Experiments with sequences obtained with a real person detection and tracking system allow us to analyze the performance of the algorithm, as well as its potential improvements.
Resumo:
In this work, we perform a first approach to emotion recognition from EEG single channel signals extracted in four (4) mother-child dyads experiment in developmental psychology -- Single channel EEG signals are analyzed and processed using several window sizes by performing a statistical analysis over features in the time and frequency domains -- Finally, a neural network obtained an average accuracy rate of 99% of classification in two emotional states such as happiness and sadness
Resumo:
Increasing the size of training data in many computer vision tasks has shown to be very effective. Using large scale image datasets (e.g. ImageNet) with simple learning techniques (e.g. linear classifiers) one can achieve state-of-the-art performance in object recognition compared to sophisticated learning techniques on smaller image sets. Semantic search on visual data has become very popular. There are billions of images on the internet and the number is increasing every day. Dealing with large scale image sets is intense per se. They take a significant amount of memory that makes it impossible to process the images with complex algorithms on single CPU machines. Finding an efficient image representation can be a key to attack this problem. A representation being efficient is not enough for image understanding. It should be comprehensive and rich in carrying semantic information. In this proposal we develop an approach to computing binary codes that provide a rich and efficient image representation. We demonstrate several tasks in which binary features can be very effective. We show how binary features can speed up large scale image classification. We present learning techniques to learn the binary features from supervised image set (With different types of semantic supervision; class labels, textual descriptions). We propose several problems that are very important in finding and using efficient image representation.
Resumo:
Screening Diversity: Women and Work in Twenty-first Century Popular Culture explores contemporary representations of diverse professional women on screen. Audiences are offered successful women with limited concerns for feminism, anti-racism, or economic justice. I introduce the term viewsers to describe a group of movie and television viewers in the context of the online review platform Internet Movie Database (IMDb) and the social media platforms Twitter and Facebook. Screening Diversity follows their engagement in a representative sample of professional women on film and television produced between 2007 and 2015. The sample includes the television shows, Scandal, Homeland, VEEP, Parks and Recreation, and The Good Wife, as well as the movies, Zero Dark Thirty, The Proposal, The Heat, The Other Woman, I Don’t Know How She Does It, and Temptation. Viewsers appreciated female characters like Olivia (Scandal), and Maya (Zero Dark Thiry) who treated their work as a quasi-religious moral imperative. Producers and viewsers shared the belief that unlimited time commitment and personal identification were vital components of professionalism. However, powerful women, like The Proposal’s Margaret and VEEP’s Selina, were often called bitches. Some viewsers embraced bitch-positive politics in recognition of the struggles of women in power. Women’s disproportionate responsibility for reproductive labor, often compromises their ability to live up to moral standards of work. Unlike producers, viewsers celebrated and valued that labor. However, texts that included serious consideration of women as workers were frequently labelled chick flicks or soap operas. The label suggested that women’s labor issues were not important enough that they could be a topic of quality television or prestigious film, which bolstered the idea that workplace equality for women is not a problem in which the general public is implicated. Emerging discussions of racial injustice on television offered hope that these formations are beginning to shift.
Resumo:
This dissertation examines black officeholding in Wilmington, North Carolina, from emancipation in 1865 through 1876, when Democrats gained control of the state government and brought Reconstruction to an end. It considers the struggle for black office holding in the city, the black men who held office, the dynamic political culture of which they were a part, and their significance in the day-to-day lives of their constituents. Once they were enfranchised, black Wilmingtonians, who constituted a majority of the city’s population, used their voting leverage to negotiate the election of black men to public office. They did so by using Republican factionalism or what the dissertation argues was an alternative partisanship. Ultimately, it was not factional divisions, but voter suppression, gerrymandering, and constitutional revisions that made local government appointive rather than elective, Democrats at the state level chipped away at the political gains black Wilmingtonians had made.