980 resultados para Regulator protein


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme catalyzes the major rate-limiting step of the mevalonic acid (MVA) pathway from which sterols and other isoprenoids are synthesized. In contrast with our extensive knowledge of the regulation of HMGR in yeast and animals, little is known about this process in plants. To identify regulatory components of the MVA pathway in plants, we performed a genetic screen for second-site suppressor mutations of the Arabidopsis thaliana highly drought-sensitive drought hypersensitive2 (dry2) mutant that shows decreased squalene epoxidase activity. We show that mutations in SUPPRESSOR OF DRY2 DEFECTS1 (SUD1) gene recover most developmental defects in dry2 through changes in HMGR activity. SUD1 encodes a putative E3 ubiquitin ligase that shows sequence and structural similarity to yeast Degradation of a factor (Doa10) and human TEB4, components of the endoplasmic reticulum-associated degradation C (ERAD-C) pathway. While in yeast and animals, the alternative ERAD-L/ERAD-M pathway regulates HMGR activity by controlling protein stability, SUD1 regulates HMGR activity without apparent changes in protein content. These results highlight similarities, as well as important mechanistic differences, among the components involved in HMGR regulation in plants, yeast, and animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recently discovered apolipoprotein AV (apoAV) gene has been reported to be a key player in modulating plasma triglyceride levels. Here we identify the hepatocyte nuclear factor-4 (HNF-4 ) as a novel regulator of human apoAV gene. Inhibition of HNF-4 expression by small interfering RNA resulted in down-regulation of apoAV. Deletion, mutagenesis, and binding assays revealed that HNF-4 directly regulates human apoAV promoter through DR1 [a direct repeat separated by one nucleotide (nt)], and via a novel element for HNF-4 consisting of an inverted repeat separated by 8 nt (IR8). In addition, we show that the coactivator peroxisome proliferator-activated receptor- coactivator-1 was capable of stimulating the HNF-4 -dependent transactivation of apoAV promoter. Furthermore, analyses in human hepatic cells demonstrated that AMP-activated protein kinase (AMPK) and the MAPK signaling pathway regulate human apoAV expression and suggested that this regulation may be mediated, at least in part, by changes in HNF-4 . Intriguingly, EMSAs and mice with a liver-specific disruption of the HNF-4 gene revealed a species-distinct regulation of apoAV by HNF-4 , which resembles that of a subset of HNF-4 target genes. Taken together, our data provide new insights into the binding properties and the modulation of HNF-4 and underscore the role of HNF-4 in regulating triglyceride metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Post-translational protein modifications are crucial for many fundamental cellular and extracellular processes and greatly contribute to the complexity of organisms. Human HCF-1 is a transcriptional co-regulator that undergoes complex protein maturation involving reversible and irreversible post-translational modifications. Upon synthesis as a large precursor protein, HCF-1 undergoes extensive reversible glycosylation with β-N-acetylglucosamine giving rise to O-linked-β-N-acetylglucosamine (O-GlcNAc) modified serines and threonines. HCF-1 also undergoes irreversible site-specific proteolysis, which is important for one of HCF-1's major functions - the regulation of the cell-division cycle. HCF-1 O-GlcNAcylation and site-specific proteolysis are both catalyzed by a single enzyme with an unusual dual enzymatic activity, the O-GlcNAc transferase (OGT). HCF-1 is cleaved by OGT at any of six highly conserved 26 amino acid repeated sequences (HCF-1PRO repeats), but the mechanisms and the substrate requirements for OGT-mediated cleavage are not understood. In the present work, I characterized substrate requirements for OGT-mediated cleavage and O-GlcNAcylation of HCF-1. I identified key elements within the HCF-1PRO-repeat sequence that are important for proteolysis. Remarkably, an invariant single amino acid side-chain within the HCF-1PRO-repeat sequence displays particular OGT-binding properties and is essential for proteolysis. Additionally, I characterized substrate requirements for proteolysis outside of the HCF-1PRO repeat and identified a novel, highly O-GlcNAcylated OGT-binding sequence that enhances cleavage of the first HCF-1PRO repeat. These results link OGT association and its O-GlcNAcylation activities to HCF-1PRO-repeat proteolysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pain perception has evolved as a warning mechanism to alert organisms to tissue damage and dangerous environments. In humans, however, undesirable, excessive or chronic pain is a common and major societal burden for which available medical treatments are currently suboptimal. New therapeutic options have recently been derived from studies of individuals with congenital insensitivity to pain (CIP). Here we identified 10 different homozygous mutations in PRDM12 (encoding PRDI-BF1 and RIZ homology domain-containing protein 12) in subjects with CIP from 11 families. Prdm proteins are a family of epigenetic regulators that control neural specification and neurogenesis. We determined that Prdm12 is expressed in nociceptors and their progenitors and participates in the development of sensory neurons in Xenopus embryos. Moreover, CIP-associated mutants abrogate the histone-modifying potential associated with wild-type Prdm12. Prdm12 emerges as a key factor in the orchestration of sensory neurogenesis and may hold promise as a target for new pain therapeutics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Podocytes are essential for the function of the kidney glomerular filter. A highly differentiated cytoskeleton is requisite for their integrity. Although much knowledge has been gained on the organization of cortical actin networks in podocyte's foot processes, less is known about the molecular organization of the microtubular cytoskeleton in primary processes and the cell body. To gain an insight into the organization of the microtubular cytoskeleton of the podocyte, we systematically analyzed the expression of microtubule associated proteins (Maps), a family of microtubules interacting proteins with known functions as regulator, scaffold and guidance proteins. We identified microtubule associated protein 1b (MAP1B) to be specifically enriched in podocytes in human and rodent kidney. Using immunogold labeling in electron microscopy, we were able to demonstrate an enrichment of MAP1B in primary processes. A similar association of MAP1B with the microtubule cytoskeleton was detected in cultured podocytes. Subcellular distribution of MAP1B HC and LC1 was analyzed using a double fluorescent reporter MAP1B fusion protein. Subsequently we analyzed mice constitutively depleted of MAP1B. Interestingly, MAP1B KO was not associated with any functional or structural alterations pointing towards a redundancy of MAP proteins in podocytes. In summary, we established MAP1B as a specific marker protein of the podocyte microtubular cytoskeleton.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants synthesize a myriad of isoprenoid products that are required both for essential constitutive processes and for adaptive responses to the environment. The enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) catalyzes a key regulatory step of the mevalonate pathway for isoprenoid biosynthesis and is modulated by many endogenous and external stimuli. In spite of that, no protein factor interacting with and regulating plant HMGR in vivo has been described so far. Here, we report the identification of two B99 regulatory subunits of protein phosphatase 2A (PP2A), designated B99a and B99b, that interact with HMGR1S and HMGR1L, the major isoforms of Arabidopsis thaliana HMGR. B99a and B99b are Ca2+ binding proteins of the EF-hand type. We show that HMGR transcript, protein, and activity levels are modulated by PP2A in Arabidopsis. When seedlings are transferred to salt-containing medium, B99a and PP2A mediate the decrease and subsequent increase of HMGR activity, which results from a steady rise of HMGR1-encoding transcript levels and an initial sharper reduction of HMGR protein level. In unchallenged plants, PP2A is a posttranslational negative regulator of HMGR activity with the participation of B99b. Our data indicate that PP2A exerts multilevel control on HMGR through the fivemember B99 protein family during normal development and in response to a variety of stress conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and purpose: The TP53 induced glycolysis and apoptosis regulator (TIGAR) functions to lower fructose-2,6-bisphosphate (Fru-2,6-P2) levels in cells, consequently decreasing glycolysis and leading to the scavenging of reactive oxygen species (ROS), which correlate with a higher resistance to cell death. The decrease in intracellular ROS levels in response to TIGAR may also play a role in the ability of p53 to protect from the accumulation of genomic lesions. Given these good prospects of TIGAR for metabolic regulation and p53-response modulation, we analyzed the effects of TIGAR knockdown in U87MG and T98G glioblastoma-derived cell lines. Methods/results: After TIGAR-knockdown in glioblastoma cell lines, different metabolic parameters were assayed, showing an increase in Fru-2,6-P2, lactate and ROS levels, with a concomitant decrease in reduced glutathione (GSH) levels. In addition, cell growth was inhibited without evidence of apoptotic or autophagic cell death. In contrast, a clear senescent phenotype was observed. We also found that TIGAR protein levels were increased shortly after irradiation. In addition, avoiding radiotherapy-triggered TIGAR induction by gene silencing resulted in the loss of capacity of glioblastoma cells to form colonies in culture and the delay of DNA repair mechanisms, based in c-H2AX foci, leading cells to undergo morphological changes compatible with a senescent phenotype. Thus, the results obtained raised the possibility to consider TIGAR as a therapeutic target to increase radiotherapy effects. Conclusion: TIGAR abrogation provides a novel adjunctive therapeutic strategy against glial tumors by increasing radiation-induced cell impairment, thus allowing the use of lower radiotherapeutic doses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein tyrosine phosphorylation controls a wide array of cellular responses such as growth, migration, proliferation, differentiation, metabolism and cytoskeletal organisation. Tyrosine phosphorylation is a dynamic process involving the competing activities of protein tyrosine kinases and protein tyrosine phosphatases. The protein tyrosine kinases are further divided into non-receptor- and receptor tyrosine kinases. The latter are transmembrane glycoproteins activated by the binding of specific ligands, mostly growth factors, to their extracellular domain, transmitting different signals to the cell. Growth factor receptors such as the epidermal growth factor receptor, vascular endothelial growth factor receptor 2 and platelet-derived growth factor receptor β, belong to the receptor tyrosine kinases, the signalling of which is often disturbed in various diseases, including cancer. This has led to the development of receptor tyrosine kinase antagonists for use as anti-cancer drugs. As the receptor tyrosine kinases, also the protein tyrosine phosphatases can be divided into receptor- and non-receptor types. The protein tyrosine phosphatases have attained much less attention than the receptor tyrosine kinases partly because they were identified later. However, accumulating evidence shows that the protein tyrosine phosphatases have important roles as specific and active regulators of tyrosine phosphorylation in cells and of physiological processes. Consequently, the protein tyrosine phosphatases are receiving arising interest as novel drug targets. The aim of this work was to elucidate the negative regulation of receptor tyrosine kinases by one non-receptor protein tyrosine phosphatase, T-cell protein tyrosine phosphatase TCPTP. The results show that TCPTP activated by cell adhesion receptor integrin α1 functions as a negative regulator of the epidermal growth factor receptor. It was also found that TCPTP affects vascular endothelial growth factor receptor 2 signalling and angiogenesis. Lastly, a High-throughput screen with 64,280 compounds was performed to identify novel TCPTP activators, resulting in identification of one small molecule compound capable of exerting similar effects on TCPTP signalling as integrin α1. This compound is shown to downregulate signalling of epidermal growth factor receptor and platelet-derived growth factor receptor β, as well as to inhibit cell proliferation and angiogenesis. Our results suggest that a suitable small-molecule TCPTP activator could be utilized in the development of novel anti-cancer drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

C-Jun N-terminal kinase (JNK) is traditionally recognized as a crucial factor in stress response and inducer of apoptosis upon various stimulations. Three isoforms build the JNK subfamily of MAPK; generally expressed JNK1 and JNK2 and brain specific JNK3. Degenerative potency placed JNK in the spotlight as potential pharmacological option for intervention. Unfortunately, adverse effects of potential drugs and observation that expression of only JNK2 and JNK3 are induced upon stress, restrained initial enthusiasm. Notably, JNK1 demonstrated atypical high constitutive activity in neurons that is not responsive to cellular stresses and indicated existence of physiological activity. This thesis aimed at revealing the physiological functions of JNK1 in actin homeostasis through novel effector MARCKS-Like 1 (MARCKSL1) protein, neuronal trafficking mediated by major kinesin-1 motor protein and microtubule (MT) dynamics via STMN2/SCG10. The screen for novel physiological JNK substrates revealed specific phosphorylation of C-terminal end of MARCKSL1 at S120, T148 and T183 both ex vivo and in vitro. By utilizing site-specific mutagenesis, various actin dynamics and migrations assays we were able to demonstrate that JNK1 phosphorylation specifically facilitates F-actin bundling and thus filament stabilisation. Consecutively, this molecular mechanism was proved to enhance formation of filopodia; cell surface projections that allow cell sensing surrounding environment and migrate efficiently. Our results visualize JNK dependent and MARCKSL1 executed induction of filopodia in neurons and fibroblast indicating general mechanism. Subsequently, inactivation of JNK action on MARCKSL1 shifts cellular actin machinery into lamellipodial dynamic arrangement. Tuning of actin cytoskeleton inevitably melds with cell migration. We observed that both active JNK and JNK pseudo-phosphorylated form of MARCKSL1 reduce actin turnover in intact cells leading to overall diminished cell motility. We demonstrate that tumour transformed cells from breast, prostate, lung and muscle-derived cancers upregulate MARCKSL1. We showed on the example of prostate cancer PC-3 cell line that JNK phosphorylation negatively controls MARCKSL1 ability to induce migration, which precedes cancer cell metastasis. The second round of identification of JNK physiological substrates resulted in detection of predominant motor protein kinesin-1 (Kif5). Mass spectrometry detailed analysis showed evident endogenous phosphorylation of kinesin-1 on S176 within motor domain that interacts with MT. In vitro phosphorylation of bacterially expressed kinesin heavy chain by JNK isoforms displayed higher specificity of JNK1 when compared to JNK3. Since, JNK1 is constitutively active in neurons it signified physiological aspect of kinesin-1 regulation. Subsequent biochemical examination revealed that kinesin-1, when not phosphorylated on JNK site, exhibits much higher affinity toward MTs. Expression of the JNK non-phosphorable kinesin-1 mutant in intact cells as well as in vitro single molecule imaging using total internal reflection fluorescence microscopy indicated that the mutant loses normal speed and is not able to move processively into proper cellular compartments. We identify novel kinesin-1 cargo protein STMN2/SCG10, which along with known kinesin-1 cargo BDNF is showing impaired trafficking when JNK activity is inhibited. Our data postulates that constitutive JNK activity in neurons is crucial for unperturbed physiologically relevant transport of kinesin-1 dependant cargo. Additionally, my work helps to validate another novel physiological JNK1 effector STMN2/SCG10 as determinant of axodendritic neurites dynamics in the developing brain through regulation of MT turnover. We show successively that this increased MT dynamics is crucial during developmental radial migration when brain layering occurs. Successively, we are able to show that introduction of JNK phosphorylation mimicking STMN2/SCG10 S62/73D mutant rescues completely JNK1 genetic deletion migration phenotype. We prove that STMN2/SCG10 is predominant JNK effector responsible for MT depolymerising activity and neurite length during brain development. Summarizing, this work describes identification of three novel JNK substrates MARCKSL1, kinesin-1 and STMN2/SCG10 and investigation of their roles in cytoskeleton dynamics and cargo transport. This data is of high importance to understand physiological meaning of JNK activity, which might have an adverse effect during pharmaceutical intervention aiming at blocking pathological JNK action.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cystic fibrosis (CF) is a lethal autosomal recessive genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR). Mutations in the CFTR gene may result in a defective processing of its protein and alter the function and regulation of this channel. Mutations are associated with different symptoms, including pancreatic insufficiency, bile duct obstruction, infertility in males, high sweat Cl-, intestinal obstruction, nasal polyp formation, chronic sinusitis, mucus dehydration, and chronic Pseudomonas aeruginosa and Staphylococcus aureus lung infection, responsible for 90% of the mortality of CF patients. The gene responsible for the cellular defect in CF was cloned in 1989 and its protein product CFTR is activated by an increase of intracellular cAMP. The CFTR contains two membrane domains, each with six transmembrane domain segments, two nucleotide-binding domains (NBDs), and a cytoplasmic domain. In this review we discuss the studies that have correlated the role of each CFTR domain in the protein function as a chloride channel and as a regulator of the outwardly rectifying Cl- channels (ORCCs).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The control of nitrogen metabolism in pathogenic Gram-positive bacteria has been studied in a variety of species and is involved with the expression of virulence factors. To date, no data have been reported regarding nitrogen metabolism in the odontopathogenic species Streptococcus mutans. GlnR, which controls nitrogen assimilation in the related bacterial species, Bacillus subtilis, was assessed in S. mutans for its DNA and protein binding activity. Electrophoretic mobility shift assay of the S. mutans GlnR protein indicated that GlnR binds to promoter regions of the glnRA and amtB-glnK operons. Cross-linking and pull-down assays demonstrated that GlnR interacts with GlnK, a signal transduction protein that coordinates the regulation of nitrogen metabolism. Upon formation of this stable complex, GlnK enhances the affinity of GlnR for the glnRA operon promoter. These results support an involvement of GlnR in transcriptional regulation of nitrogen metabolism-related genes and indicate that GlnK relays information regarding ammonium availability to GlnR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Azospirillum brasilense is a diazotroph that associates with important agricultural crops and thus has potential to be a nitrogen biofertilizer. The A. brasilense transcription regulator NifA, which seems to be constitutively expressed, activates the transcription of nitrogen fixation genes. It has been suggested that the nitrogen status-signaling protein GlnB regulates NifA activity by direct interaction with the NifA N-terminal GAF domain, preventing the inhibitory effect of this domain under conditions of nitrogen fixation. In the present study, we show that an N-terminal truncated form of NifA no longer required GlnB for activity and lost regulation by ammonium. On the other hand, in trans co-expression of the N-terminal GAF domain inhibited the N-truncated protein in response to fixed nitrogen levels. We also used pull-down assays to show in vitro interaction between the purified N-terminal GAF domain of NifA and the GlnB protein. The results showed that A. brasilense GlnB interacts directly with the NifA N-terminal domain and this interaction is dependent on the presence of ATP and 2-oxoglutarate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first and rate-limiting step of lipolysis is the removal of the first fatty acid from a triglyceride molecule; it is catalyzed by adipose triglyceride lipase (ATGL). ATGL is co-activated by comparative gene identification-58 (CGI-58) and inhibited by the G(0)/G(1) switch gene-2 protein (G0S2). G0S2 has also recently been identified as a positive regulator of oxidative phosphorylation within the mitochondria. Previous research has demonstrated in cell culture, a dose dependent mechanism for inhibition by G0S2 on ATGL. However our data is not consistent with this hypothesis. There was no change in G0S2 protein content during an acute lipolytic inducing set of contractions in both whole muscle, and isolated mitochondria yet both ATGL and G0S2 increase following endurance training, in spite of the fact that there should be increased reliance on intramuscular lipolysis. Therefore, inhibition of ATGL by G0S2 appears to be regulated through more complicated intracellular or post-translation regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La prolifération cellulaire et la croissance tissulaire sont étroitement contrôlées au cours du développement. Chez la Drosophila melanogaster, ces processus sont régulés en partie par la kinase stérile-20 Slik (SLK et LOK chez les mammifères) et le suppresseur de tumeur Hippo (Hpo, MST1/2 chez les mammifères) dans les cellules épithéliales. La surexpression de la kinase Slik augmente la taille des tissus chez les mouches adultes. Cependant, les mutants slik-/- meurent avant d'avoir terminé leur développement. Lorsqu’elle est surexprimée dans les cellules épithéliales des ailes en voie de développement, cette protéine favorise la prolifération cellulaire. En outre, l'expression de Slik dans une population de cellules conduit à une surprolifération des cellules voisines, même quand elles sont physiquement séparées. Ceci est probablement dû à la sécrétion de facteurs de croissance qui stimulent la prolifération de manière paracrine. En utilisant des méthodes génétiques et transcriptomiques, nous essayons de déterminer les molécules et les mécanismes impliqués. Contrairement à ce qui a été publié, nous avons constaté que Slik ne transmet pas de signal prolifératif en inhibant le suppresseur de tumeur Merlin (Mer, NF2 chez les mammifères), un composant en amont de la voie Hippo. Plutôt, elle favorise la prolifération non-autonome et la croissance des tissus en signalisation par la kinase dRaf (la seule kinase de la famille Raf chez la drosophile). Nous prouvons que dRaf est nécessaire chez les cellules voisines pour conduire la prolifération chez ces cellules. De plus, nous avons utilisé le séquençage du transcriptome pour identifier de nouveaux effecteurs en aval de Slik. Ce qui permettra de mieux comprendre les effets de SLK et LOK chez les humains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The yncE gene of Escherichia coli encodes a predicted periplasmic protein of unknown function. The gene is de-repressed under iron restriction through the action of the global iron regulator Fur. This suggests a role in iron acquisition, which is supported by the presence of the adjacent yncD gene encoding a potential TonB-dependent outer-membrane transporter. Here, the preliminary crystallographic structure of YncE is reported, revealing that it consists of a seven-bladed beta-propeller which resembles the corresponding domain of the `surface-layer protein' of Methanosarcina mazei. A full structure determination is under way in order to provide insight into the function of this protein.