972 resultados para Regression method
Resumo:
This study compared an enzyme-linked immunosorbent assay (ELISA) to a liquid chromatography-tandem mass spectrometry (LC/MS/MS) technique for measurement of tacrolimus concentrations in adult kidney and liver transplant recipients, and investigated how assay choice influenced pharmacokinetic parameter estimates and drug dosage decisions. Tacrolimus concentrations measured by both ELISA and LC/MS/MS from 29 kidney (n = 98 samples) and 27 liver (n = 97 samples) transplant recipients were used to evaluate the performance of these methods in the clinical setting. Tacrolimus concentrations measured by the two techniques were compared via regression analysis. Population pharmacokinetic models were developed independently using ELISA and LC/MS/MS data from 76 kidney recipients. Derived kinetic parameters were used to formulate typical dosing regimens for concentration targeting. Dosage recommendations for the two assays were compared. The relation between LC/MS/MS and ELISA measurements was best described by the regression equation ELISA = 1.02 . (LC/MS/MS) + 0.14 in kidney recipients, and ELISA = 1.12 . (LC/MS/MS) - 0.87 in liver recipients. ELISA displayed less accuracy than LC/MS/MS at lower tacrolimus concentrations. Population pharmacokinetic models based on ELISA and LC/MS/MS data were similar with residual random errors of 4.1 ng/mL and 3.7 ng/mL, respectively. Assay choice gave rise to dosage prediction differences ranging from 0% to 30%. ELISA measurements of tacrolimus are not automatically interchangeable with LC/MS/MS values. Assay differences were greatest in adult liver recipients, probably reflecting periods of liver dysfunction and impaired biliary secretion of metabolites. While the majority of data collected in this study suggested assay differences in adult kidney recipients were minimal, findings of ELISA dosage underpredictions of up to 25% in the long term must be investigated further.
Resumo:
We consider a mixture model approach to the regression analysis of competing-risks data. Attention is focused on inference concerning the effects of factors on both the probability of occurrence and the hazard rate conditional on each of the failure types. These two quantities are specified in the mixture model using the logistic model and the proportional hazards model, respectively. We propose a semi-parametric mixture method to estimate the logistic and regression coefficients jointly, whereby the component-baseline hazard functions are completely unspecified. Estimation is based on maximum likelihood on the basis of the full likelihood, implemented via an expectation-conditional maximization (ECM) algorithm. Simulation studies are performed to compare the performance of the proposed semi-parametric method with a fully parametric mixture approach. The results show that when the component-baseline hazard is monotonic increasing, the semi-parametric and fully parametric mixture approaches are comparable for mildly and moderately censored samples. When the component-baseline hazard is not monotonic increasing, the semi-parametric method consistently provides less biased estimates than a fully parametric approach and is comparable in efficiency in the estimation of the parameters for all levels of censoring. The methods are illustrated using a real data set of prostate cancer patients treated with different dosages of the drug diethylstilbestrol. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
This study aimed to evaluate the efficiency of multiple centroids to study the adaptability of alfalfa genotypes (Medicago sativa L.). In this method, the genotypes are compared with ideotypes defined by the bissegmented regression model, according to the researcher's interest. Thus, genotype classification is carried out as determined by the objective of the researcher and the proposed recommendation strategy. Despite the great potential of the method, it needs to be evaluated under the biological context (with real data). In this context, we used data on the evaluation of dry matter production of 92 alfalfa cultivars, with 20 cuttings, from an experiment in randomized blocks with two repetitions carried out from November 2004 to June 2006. The multiple centroid method proved efficient for classifying alfalfa genotypes. Moreover, it showed no unambiguous indications and provided that ideotypes were defined according to the researcher's interest, facilitating data interpretation.
Resumo:
Environmental pollution continues to be an emerging study field, as there are thousands of anthropogenic compounds mixed in the environment whose possible mechanisms of toxicity and physiological outcomes are of great concern. Developing methods to access and prioritize the screening of these compounds at trace levels in order to support regulatory efforts is, therefore, very important. A methodology based on solid phase extraction followed by derivatization and gas chromatography-mass spectrometry analysis was developed for the assessment of four endocrine disrupting compounds (EDCs) in water matrices: bisphenol A, estrone, 17b-estradiol and 17a-ethinylestradiol. The study was performed, simultaneously, by two different laboratories in order to evaluate the robustness of the method and to increase the quality control over its application in routine analysis. Validation was done according to the International Conference on Harmonisation recommendations and other international guidelines with specifications for the GC-MS methodology. Matrix-induced chromatographic response enhancement was avoided by using matrix-standard calibration solutions and heteroscedasticity has been overtaken by a weighted least squares linear regression model application. Consistent evaluation of key analytical parameters such as extraction efficiency, sensitivity, specificity, linearity, limits of detection and quantification, precision, accuracy and robustness was done in accordance with standards established for acceptance. Finally, the application of the optimized method in the assessment of the selected analytes in environmental samples suggested that it is an expedite methodology for routine analysis of EDC residues in water matrices.
Resumo:
We propose a 3D-2D image registration method that relates image features of 2D projection images to the transformation parameters of the 3D image by nonlinear regression. The method is compared with a conventional registration method based on iterative optimization. For evaluation, simulated X-ray images (DRRs) were generated from coronary artery tree models derived from 3D CTA scans. Registration of nine vessel trees was performed, and the alignment quality was measured by the mean target registration error (mTRE). The regression approach was shown to be slightly less accurate, but much more robust than the method based on an iterative optimization approach.
Resumo:
Parallel hyperspectral unmixing problem is considered in this paper. A semisupervised approach is developed under the linear mixture model, where the abundance's physical constraints are taken into account. The proposed approach relies on the increasing availability of spectral libraries of materials measured on the ground instead of resorting to endmember extraction methods. Since Libraries are potentially very large and hyperspectral datasets are of high dimensionality a parallel implementation in a pixel-by-pixel fashion is derived to properly exploits the graphics processing units (GPU) architecture at low level, thus taking full advantage of the computational power of GPUs. Experimental results obtained for real hyperspectral datasets reveal significant speedup factors, up to 164 times, with regards to optimized serial implementation.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
Extreme value models are widely used in different areas. The Birnbaum–Saunders distribution is receiving considerable attention due to its physical arguments and its good properties. We propose a methodology based on extreme value Birnbaum–Saunders regression models, which includes model formulation, estimation, inference and checking. We further conduct a simulation study for evaluating its performance. A statistical analysis with real-world extreme value environmental data using the methodology is provided as illustration.
Resumo:
Calomys callosus a wild rodent, is a natural host of Trypanosoma cruzi. Twelve C. callosus were infected with 10(5) trypomastigotes of the F strain (a myotropic strain) of T. cruzi. Parasitemia decreased on the 21 st day becoming negative around the 40th day of infection. All animals survived but had positive parasitological tests, until the end of the experiment. The infected animals developed severe inflammation in the myocardium and skeletal muscle. This process was pronounced from the 26 th to the 30th day and gradually subsided from the 50 th day becoming absent or residual on the 64 th day after infection. Collagen was identified by the picro Sirius red method. Fibrogenesis developed early, but regression of fibrosis occurred between the 50th and 64th day. Ultrastructural study disclosed a predominance of macrophages and fibroblasts in the inflammatory infiltrates, with small numbers of lymphocytes. Macrophages had active phagocytosis and showed points of contact with altered muscle cells. Different degrees of matrix expansion were present, with granular and fibrilar deposits and collagen bundles. These alterations subsided by the 64th days. Macrophages seem to be the main immune effector cell in the C. callosus model of infection with T. cruzi. The mechanisms involved in the rapid fibrogenesis and its regression deserve further investigation.
Resumo:
PURPOSE: Ipilimumab is a monoclonal antibody that blocks the immune-inhibitory interaction between CTL antigen 4 (CTLA-4) and its ligands on T cells. Clinical trials in cancer patients with ipilimumab have shown promising antitumor activity, particularly in patients with advanced melanoma. Often, tumor regressions in these patients are correlated with immune-related side effects such as dermatitis, enterocolitis, and hypophysitis. Although these reactions are believed to be immune-mediated, the antigenic targets for the cellular or humoral immune response are not known. EXPERIMENTAL DESIGN: We enrolled patients with advanced melanoma in a phase II study with ipilimumab. One of these patients experienced a complete remission of his tumor. The specificity and functional properties of CD8-positive T cells in his peripheral blood, in regressing tumor tissue, and at the site of an immune-mediated skin rash were investigated. RESULTS: Regressing tumor tissue was infiltrated with CD8-positive T cells, a high proportion of which were specific for Melan-A. The skin rash was similarly infiltrated with Melan-A-specific CD8-positive T cells, and a dramatic (>30-fold) increase in Melan-A-specific CD8-positive T cells was apparent in peripheral blood. These cells had an effector phenotype and lysed Melan-A-expressing tumor cells. CONCLUSIONS: Our results show that Melan-A may be a major target for both the autoimmune and antitumor reactions in patients treated with anti-CTLA-4, and describe for the first time the antigen specificity of CD8-positive T cells that mediate tumor rejection in a patient undergoing treatment with an anti-CTLA-4 antibody. These findings may allow a better integration of ipilimumab into other forms of immunotherapy.
Resumo:
Purpose: To present the long-term outcome (LTO) of 10 adolescents and young adults with documented cognitive and behavioral regression as children due to non-lesional focal, mainly frontal epilepsy with continuous spike-waves during slow wave sleep (CSWS). Method: Past medical and EEG data of all patients were reviewed and neuropsychological tests exploring main cognitive functions were administered. Result: After a mean duration of follow-up of 15.6 years (range 8-23 years), none of the 10 patients had recovered fully, but four regained borderline to normal intelligence and were almost independent. Patients with prolonged global intellectual regression had the worst outcome, whereas those with more specific and short-lived deficits recovered best. The marked behavioral disorders that were so disturbing during the active period (AP) resolved in all but one patient. Executive functions were neither severely nor homogenously affected. Three patients with a frontal syndrome during the AP disclosed only mild residual executive and social cognition deficits. The main cognitive gains occurred shortly after the AP, but qualitative improvements continued to occur. LTO correlated best with duration of CSWS. Conclusion: Our findings emphasize that cognitive recovery after cessation of CSWS depends on the severity and duration of the initial regression. None of our patients had major executive and social cognition deficits with preserved intelligence as reported in adults with destructive lesions of the frontal lobes during childhood. Early recognition of epilepsy with CSWS and rapid introduction of effective therapy are crucial for a best possible outcome.
Resumo:
PURPOSE: To evaluate the utility of inversion recovery with on-resonant water suppression (IRON) in combination with injection of the long-circulating monocrystalline iron oxide nanoparticle (MION)-47 for contrast material-enhanced magnetic resonance (MR) angiography. MATERIALS AND METhods: Experiments were approved by the institutional animal care committee. Eleven rabbits were imaged at baseline before injection of a contrast agent and then serially 5-30 minutes, 2 hours, 1 day, and 3 days after a single intravenous bolus injection of 80 micromol of MION-47 per kilogram of body weight (n = 6) or 250 micromol/kg MION-47 (n = 5). Conventional T1-weighted MR angiography and IRON MR angiography were performed on a clinical 3.0-T imager. Signal-to-noise and contrast-to-noise ratios were measured in the aorta of rabbits in vivo. Venous blood was obtained from the rabbits before and after MION-47 injection for use in phantom studies. RESULTS: In vitro blood that contained MION-47 appeared signal attenuated on T1-weighted angiograms, while characteristic signal-enhanced dipolar fields were observed on IRON angiograms. In vivo, the vessel lumen was signal attenuated on T1-weighted MR angiograms after MION-47 injection, while IRON supported high intravascular contrast by simultaneously providing positive signal within the vessels and suppressing background tissue (mean contrast-to-noise ratio, 61.9 +/- 12.4 [standard deviation] after injection vs 1.1 +/- 0.4 at baseline, P < .001). Contrast-to-noise ratio was higher on IRON MR angiograms than on conventional T1-weighted MR angiograms (9.0 +/- 2.5, P < .001 vs IRON MR angiography) and persisted up to 24 hours after MION-47 injection (76.2 +/- 15.9, P < .001 vs baseline). CONCLUSION: IRON MR angiography in conjunction with superparamagnetic nanoparticle administration provides high intravascular contrast over a long time and without the need for image subtraction.
Resumo:
Aim This study used data from temperate forest communities to assess: (1) five different stepwise selection methods with generalized additive models, (2) the effect of weighting absences to ensure a prevalence of 0.5, (3) the effect of limiting absences beyond the environmental envelope defined by presences, (4) four different methods for incorporating spatial autocorrelation, and (5) the effect of integrating an interaction factor defined by a regression tree on the residuals of an initial environmental model. Location State of Vaud, western Switzerland. Methods Generalized additive models (GAMs) were fitted using the grasp package (generalized regression analysis and spatial predictions, http://www.cscf.ch/grasp). Results Model selection based on cross-validation appeared to be the best compromise between model stability and performance (parsimony) among the five methods tested. Weighting absences returned models that perform better than models fitted with the original sample prevalence. This appeared to be mainly due to the impact of very low prevalence values on evaluation statistics. Removing zeroes beyond the range of presences on main environmental gradients changed the set of selected predictors, and potentially their response curve shape. Moreover, removing zeroes slightly improved model performance and stability when compared with the baseline model on the same data set. Incorporating a spatial trend predictor improved model performance and stability significantly. Even better models were obtained when including local spatial autocorrelation. A novel approach to include interactions proved to be an efficient way to account for interactions between all predictors at once. Main conclusions Models and spatial predictions of 18 forest communities were significantly improved by using either: (1) cross-validation as a model selection method, (2) weighted absences, (3) limited absences, (4) predictors accounting for spatial autocorrelation, or (5) a factor variable accounting for interactions between all predictors. The final choice of model strategy should depend on the nature of the available data and the specific study aims. Statistical evaluation is useful in searching for the best modelling practice. However, one should not neglect to consider the shapes and interpretability of response curves, as well as the resulting spatial predictions in the final assessment.
Resumo:
The paper develops a method to solve higher-dimensional stochasticcontrol problems in continuous time. A finite difference typeapproximation scheme is used on a coarse grid of low discrepancypoints, while the value function at intermediate points is obtainedby regression. The stability properties of the method are discussed,and applications are given to test problems of up to 10 dimensions.Accurate solutions to these problems can be obtained on a personalcomputer.
Resumo:
This paper shows how recently developed regression-based methods for thedecomposition of health inequality can be extended to incorporateindividual heterogeneity in the responses of health to the explanatoryvariables. We illustrate our method with an application to the CanadianNPHS of 1994. Our strategy for the estimation of heterogeneous responsesis based on the quantile regression model. The results suggest that thereis an important degree of heterogeneity in the association of health toexplanatory variables which, in turn, accounts for a substantial percentageof inequality in observed health. A particularly interesting finding isthat the marginal response of health to income is zero for healthyindividuals but positive and significant for unhealthy individuals. Theheterogeneity in the income response reduces both overall health inequalityand income related health inequality.