894 resultados para Reflection coefficient


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high-resolution three-dimensional (3D) seismic reflection system for small-scale targets in lacustrine settings has been developed. Its main characteristics include navigation and shot-triggering software that fires the seismic source at regular distance intervals (max. error of 0.25 m) with real-time control on navigation using differential GPS (Global Positioning System). Receiver positions are accurately calculated (error < 0.20 m) with the aid of GPS antennas attached to the end of each of three 24-channel streamers. Two telescopic booms hold the streamers at a distance of 7.5 m from each other. With a receiver spacing of 2.5 m, the bin dimension is 1.25 m in inline and 3.75 m in crossline direction. To test the system, we conducted a 3D survey of about 1 km(2) in Lake Geneva, Switzerland, over a complex fault zone. A 5-m shot spacing resulted in a nominal fold of 6. A double-chamber bubble-cancelling 15/15 in(3) air gun (40-650 Hz) operated at 80 bars and 1 m depth gave a signal penetration of 300 m below water bottom and a best vertical resolution of 1.1 m. Processing followed a conventional scheme, but had to be adapted to the high sampling rates, and our unconventional navigation data needed conversion to industry standards. The high-quality data enabled us to construct maps of seismic horizons and fault surfaces in three dimensions. The system proves to be well adapted to investigate complex structures by providing non-aliased images of reflectors with dips up to 30 degrees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations of solute transport in fractured rock aquifers often rely on tracer test data acquired at a limited number of observation points. Such data do not, by themselves, allow detailed assessments of the spreading of the injected tracer plume. To better understand the transport behavior in a granitic aquifer, we combine tracer test data with single-hole ground-penetrating radar (GPR) reflection monitoring data. Five successful tracer tests were performed under various experimental conditions between two boreholes 6 m apart. For each experiment, saline tracer was injected into a previously identified packed-off transmissive fracture while repeatedly acquiring single-hole GPR reflection profiles together with electrical conductivity logs in the pumping borehole. By analyzing depth-migrated GPR difference images together with tracer breakthrough curves and associated simplified flow and transport modeling, we estimate (1) the number, the connectivity, and the geometry of fractures that contribute to tracer transport, (2) the velocity and the mass of tracer that was carried along each flow path, and (3) the effective transport parameters of the identified flow paths. We find a qualitative agreement when comparing the time evolution of GPR reflectivity strengths at strategic locations in the formation with those arising from simulated transport. The discrepancies are on the same order as those between observed and simulated breakthrough curves at the outflow locations. The rather subtle and repeatable GPR signals provide useful and complementary information to tracer test data acquired at the outflow locations and may help us to characterize transport phenomena in fractured rock aquifers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The right of a person to be protected from natural hazards is a characteristic of the social and economical development of the society. This paper is a contribution to the reflection about the role of Civil Protection organizations in a modern society. The paper is based in the inaugural conference made by the authors on the 9th Plinius Conference on Mediterranean Storms. Two major issues are considered. The first one is sociological; the Civil Protection organizations and the responsible administration of the land use planning should be perceived as reliable as possible, in order to get consensus on the restrictions they pose, temporary or definitely, on the individual free use of the territory as well as in the entire warning system. The second one is technological: in order to be reliable they have to issue timely alert and warning to the population at large, but such alarms should be as "true" as possible. With this aim, the paper summarizes the historical evolution of the risk assessment, starting from the original concept of "hazard", introducing the concepts of "scenario of event" and "scenario of risk" and ending with a discussion about the uncertainties and limits of the most advanced and efficient tools to predict, to forecast and to observe the ground effects affecting people and their properties. The discussion is centred in the case of heavy rains and flood events in the North-West of Mediterranean Region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: Diffusion weighted magnetic resonance imaging (MRI) is now widely used in human brain diagnosis.1 To date molecular mechanisms underlying changes in Apparent Diffusion Coefficient (ADC) signals remain poorly understood. AQP4, localized to astrocytes, is one of the most highly expressed cerebral AQPs.2 AQP4 is involved in water movement within the cell membrane of cultured astrocytes.3 We hypothesize that AQP4 contributes to water diffusion and underlying ADC values in normal brain. Methods: We used an RNA interference (RNAi) protocol in vivo, to acutely knockdown expression of AQP4 in rat brain and to determine whether this was associated with changes in brain ADC values using MRI protocols as previously described.4 RNAi was performed using specific small interference RNA (siRNA) against AQP4 (siAQP4) and a non-targeted-siRNA (siGLO) as a control. The specificity and efficiency of the siAQP4 were first tested in vitro in astrocyte and hippocampal slice cultures. In vivo, siRNAs were injected into the rat cortex 3d prior to MRI acquisition and AQP4 was assessed by western blot (n=4) and immunohistochemistry (n=6). Histology was performed on adjacent slices. Results: siAQP4 application on primary astrocyte cultures induced a 76% decrease in AQP4 expression after 4 days. In hippocampal slice cultures; we also found a significant decrease in AQP4 expression in astrocytes after siAQP4. In vivo, injection of non-targeted siRNA (siGLO) tagged with CY3 allowed us to show that GFAP positive cells (astrocytes) were positively stained with CY3-siGLO, showing efficient transfection. Western blot and immunohistochemical analysis showed that siAQP4 induced a ~30% decrease in AQP4 expression without modification of tissue properties or cell death. After siAQP4 treatment, a significant decrease in ADC values (~50%) were observed without altered of T2 values. Conclusions: Together these results suggest that AQP4 reduces water diffusion through the astrocytic plasma membrane and decreases ADC values. Our findings demonstrate for the first time that astrocytic AQP4 contributes significantly to brain water diffusion and ADC values in normal brain. These results open new avenues to interpretation of ADC values under normal physiological conditions and in acute and chronic brain injuries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identifying transport pathways in fractured rock is extremely challenging as flow is often organized in a few fractures that occupy a very small portion of the rock volume. We demonstrate that saline tracer experiments combined with single-hole ground penetrating radar (GPR) reflection imaging can be used to monitor saline tracer movement within mm-aperture fractures. A dipole tracer test was performed in a granitic aquifer by injecting a saline solution in a known fracture, while repeatedly acquiring single-hole GPR sections in the pumping borehole located 6 m away. The final depth-migrated difference sections make it possible to identify consistent temporal changes over a 30 m depth interval at locations corresponding to fractures previously imaged in GPR sections acquired under natural flow and tracer-free conditions. The experiment allows determining the dominant flow paths of the injected tracer and the velocity (0.4-0.7 m/min) of the tracer front. Citation: Dorn, C., N. Linde, T. Le Borgne, O. Bour, and L. Baron (2011), Single-hole GPR reflection imaging of solute transport in a granitic aquifer, Geophys. Res. Lett., 38, L08401, doi: 10.1029/2011GL047152.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rationale of this study was to investigate molecular flexibility and its influence on physicochemical properties with a view to uncovering additional information on the fuzzy concept of dynamic molecular structure. Indeed, it is now known that computed molecular interaction fields (MIFs) such as molecular electrostatic potentials (MEPs) and lipophilicity potentials (MLPs) are conformation-dependent, as are dipole moments. A database of 125 compounds was used whose conformational space was explored, while conformation-dependent parameters were computed for each non-redundant conformer found in the conformational space of the compounds. These parameters were the virtual log P (log P(MLP), calculated by a MLP approach), the apolar surface area (ASA), polar surface area (PSA), and solvent-accessible surface (SAS). For each compound, the range taken by each parameter (its property space) was divided by the number of rotors taken as an index of flexibility, yielding a parameter termed 'molecular sensitivity'. This parameter was poorly correlated with others (i.e., it contains novel information) and showed the compounds to fall into two broad classes. 'Sensitive' molecules are those whose computed property ranges are markedly sensitive to conformational effects, whereas 'insensitive' (in fact, less sensitive) molecules have property ranges which are comparatively less affected by conformational fluctuations. A pharmacokinetic application is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous sources of evidence point to the fact that heterogeneity within the Earth's deep crystalline crust is complex and hence may be best described through stochastic rather than deterministic approaches. As seismic reflection imaging arguably offers the best means of sampling deep crustal rocks in situ, much interest has been expressed in using such data to characterize the stochastic nature of crustal heterogeneity. Previous work on this problem has shown that the spatial statistics of seismic reflection data are indeed related to those of the underlying heterogeneous seismic velocity distribution. As of yet, however, the nature of this relationship has remained elusive due to the fact that most of the work was either strictly empirical or based on incorrect methodological approaches. Here, we introduce a conceptual model, based on the assumption of weak scattering, that allows us to quantitatively link the second-order statistics of a 2-D seismic velocity distribution with those of the corresponding processed and depth-migrated seismic reflection image. We then perform a sensitivity study in order to investigate what information regarding the stochastic model parameters describing crustal velocity heterogeneity might potentially be recovered from the statistics of a seismic reflection image using this model. Finally, we present a Monte Carlo inversion strategy to estimate these parameters and we show examples of its application at two different source frequencies and using two different sets of prior information. Our results indicate that the inverse problem is inherently non-unique and that many different combinations of the vertical and lateral correlation lengths describing the velocity heterogeneity can yield seismic images with the same 2-D autocorrelation structure. The ratio of all of these possible combinations of vertical and lateral correlation lengths, however, remains roughly constant which indicates that, without additional prior information, the aspect ratio is the only parameter describing the stochastic seismic velocity structure that can be reliably recovered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimation of the spatial statistics of subsurface velocity heterogeneity from surface-based geophysical reflection survey data is a problem of significant interest in seismic and ground-penetrating radar (GPR) research. A method to effectively address this problem has been recently presented, but our knowledge regarding the resolution of the estimated parameters is still inadequate. Here we examine this issue using an analytical approach that is based on the realistic assumption that the subsurface velocity structure can be characterized as a band-limited scale-invariant medium. Our work importantly confirms recent numerical findings that the inversion of seismic or GPR reflection data for the geostatistical properties of the probed subsurface region is sensitive to the aspect ratio of the velocity heterogeneity and to the decay of its power spectrum, but not to the individual values of the horizontal and vertical correlation lengths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface-based ground penetrating radar (GPR) and electrical resistance tomography (ERT) are common tools for aquifer characterization, because both methods provide data that are sensitive to hydrogeologically relevant quantities. To retrieve bulk subsurface properties at high resolution, we suggest incorporating structural information derived from GPR reflection data when inverting surface ERT data. This reduces resolution limitations, which might hinder quantitative interpretations. Surface-based GPR reflection and ERT data have been recorded on an exposed gravel bar within a restored section of a previously channelized river in northeastern Switzerland to characterize an underlying gravel aquifer. The GPR reflection data acquired over an area of 240×40 m map the aquifer's thickness and two internal sub-horizontal regions with different depositional patterns. The interface between these two regions and the boundary of the aquifer with then underlying clay are incorporated in an unstructured ERT mesh. Subsequent inversions are performed without applying smoothness constraints across these boundaries. Inversion models obtained by using these structural constraints contain subtle resistivity variations within the aquifer that are hardly visible in standard inversion models as a result of strong vertical smearing in the latter. In the upper aquifer region, with high GPR coherency and horizontal layering, the resistivity is moderately high (N300 Ωm). We suggest that this region consists of sediments that were rearranged during more than a century of channelized flow. In the lower low coherency region, the GPR image reveals fluvial features (e.g., foresets) and generally more heterogeneous deposits. In this region, the resistivity is lower (~200 Ωm), which we attribute to increased amounts of fines in some of the well-sorted fluvial deposits. We also find elongated conductive anomalies that correspond to the location of river embankments that were removed in 2002.