831 resultados para Reduced physical models
Resumo:
This paper discusses a reliability based optimisation modelling approach demonstrated for the design of a SiP structure integrated by stacking dies one upon the other. In this investigation the focus is on the strategy for handling the uncertainties in the package design inputs and their implementation into the design optimisation modelling framework. The analysis of fhermo-mechanical behaviour of the package is utilised to predict the fatigue life-time of the lead-free board level solder interconnects and warpage of the package under thermal cycling. The SiP characterisation is obtained through the exploitation of Reduced Order Models (ROM) constructed using high fidelity analysis and Design of Experiments (DoE) methods. The design task is to identify the optimal SiP design specification by varying several package input parameters so that a specified target reliability of the solder joints is achieved and in the same time design requirements and package performance criteria are met
Resumo:
A design methodology based on numerical modelling, integrated with optimisation techniques and statistical methods, to aid the process control of micro and nano-electronics based manufacturing processes is presented in this paper. The design methodology is demonstrated for a micro-machining process called Focused Ion Beam (FIB). This process has been modelled to help understand how a pre-defined geometry of micro- and nano- structures can be achieved using this technology. The process performance is characterised on the basis of developed Reduced Order Models (ROM) and are generated using results from a mathematical model of the Focused Ion Beam and Design of Experiment (DoE) methods. Two ion beam sources, Argon and Gallium ions, have been used to compare and quantify the process variable uncertainties that can be observed during the milling process. The evaluations of the process performance takes into account the uncertainties and variations of the process variables and are used to identify their impact on the reliability and quality of the fabricated structure. An optimisation based design task is to identify the optimal process conditions, by varying the process variables, so that certain quality objectives and requirements are achieved and imposed constraints are satisfied. The software tools used and developed to demonstrate the design methodology are also presented.
Resumo:
This paper presents a design methodology based on numerical modelling, integrated with optimisation techniques and statistical methods, to aid the development of new advanced technologies in the area of micro and nano systems. The design methodology is demonstrated for a micro-machining process called Focused Ion Beam (FIB). This process has been modelled to provide knowledge of how a pre-defined geometry can be achieved through this direct milling. The geometry characterisation is obtained using a Reduced Order Models (ROM), generated from the results of a mathematical model of the Focused Ion Beam, and Design of Experiment (DoE) methods. In this work, the focus is on the design flow methodology which includes an approach on how to include process parameter uncertainties into the process optimisation modelling framework. A discussion on the impact of the process parameters, and their variations, on the quality and performance of the fabricated structure is also presented. The design task is to identify the optimal process conditions, by altering the process parameters, so that certain reliability and confidence of the application is achieved and the imposed constraints are satisfied. The software tools used and developed to demonstrate the design methodology are also presented.
Resumo:
The triple-differential cross section for ionization of a heavy atom is shown to depend on the spin of the incident electron even if this is polarized entirely parallel or antiparallel to its direction of propagation, the atom is unpolarized, and the spins of the ejected electrons are not resolved. Quantitative predictions for the spin asymmetry are presented in a relativistic distorted-wave Born approximation. Simple physical models are introduced to understand both these results and further symmetry properties involving the reversal of a spatial momentum component also.
Resumo:
Explicit finite difference (FD) schemes can realise highly realistic physical models of musical instruments but are computationally complex. A design methodology is presented for the creation of FPGA-based micro-architectures for FD schemes which can be applied to a range of applications with varying computational requirements, excitation and output patterns and boundary conditions. It has been applied to membrane and plate-based sound producing models, resulting in faster than real-time performance on a Xilinx XC2VP50 device which is 10 to 35 times faster than general purpose and DSP processors. The models have developed in such a way to allow a wide range of interaction (by a musician) thereby leading to the possibility of creating a highly realistic digital musical instrument.
Resumo:
In this paper the use of eigenvalue stability analysis of very large dimension aeroelastic numerical models arising from the exploitation of computational fluid dynamics is reviewed. A formulation based on a block reduction of the system Jacobian proves powerful to allow various numerical algorithms to be exploited, including frequency domain solvers, reconstruction of a term describing the fluid–structure interaction from the sparse data which incurs the main computational cost, and sampling to place the expensive samples where they are most needed. The stability formulation also allows non-deterministic analysis to be carried out very efficiently through the use of an approximate Newton solver. Finally, the system eigenvectors are exploited to produce nonlinear and parameterised reduced order models for computing limit cycle responses. The performance of the methods is illustrated with results from a number of academic and large dimension aircraft test cases.
Resumo:
This paper considers the ways in which structural model parameter variability can in?uence aeroelastic stability. Previous work on formulating the stability calculation (with the Euler equations providing the aerodynamic predictions) is exploited to use Monte Carlo, Interval and Perturbation calculations to allow this question to be investigated. Three routes are identi?ed. The ?rst involves variable normal mode frequencies only. The second involves normal mode frequencies and mode shapes. Finally, the third, in addition to normal mode frequencies and mode shapes, also includes their in?uence on the static equilibrium. Previous work has suggested only considering route 1, which allows signi?cant gains in computational e?ciency if reduced order models can be built for the aerodynamics. However, results in the current paper show that neglecting route 2 can give misleading results for the ?utter onset prediction.
Resumo:
This paper considers the ways in which structural model parameter variability can influence aeroelastic stability. Previous work on formulating the stability calculation (with the Euler equations providing the aerodynamic predictions) is exploited to use Monte Carlo, interval, and perturbation calculations to allow this question to be investigated. Three routes are identified. The first involves variable normal-mode frequencies only. The second involves normal-mode frequencies and shapes. Finally, the third, in addition to normal-mode frequencies and shapes, also includes their influence on the static equilibrium. Previous work has suggested only considering the first route, which allows significant gains in computational efficiency if reduced-order models can be built for the aerodynamics. However, results in the current paper show that neglecting the mode-shape variation can give misleading results for the flutter-onset prediction, complicating the development of reduced aerodynamic models for variability analysis.
Resumo:
Ionic liquids have received significant interest from research groups and industry for a range of novel applications. Many of these require a thorough knowledge of the thermophysical properties of the pure fluids and their mixtures. Despite this need, the necessary experimental data for many properties are scarce and often inconsistent between the various sources. However, by using accurate data, predictive physical models can be developed which are highly useful, and some would consider essential, if ionic liquids are to realise their full potential. This is particularly true if one can use them to design new ionic liquids which maximise key desired attributes. This paper will review some of the recent advances in our understanding, prediction and correlation of selected ionic liquid physical properties.
Resumo:
The development of accurate structural/thermal numerical models of complex systems, such as aircraft fuselage barrels, is often limited and determined by the smallest scales that need to be modelled. The development of reduced order models of the smallest scales and consequently their integration with higher level models can be a way to minimise the bottle neck present, while still having efficient, robust and accurate numerical models. In this paper a methodology on how to develop compact thermal fluid models (CTFMs) for compartments where mixed convection regimes are present is demonstrated. Detailed numerical simulations (CFD) have been developed for an aircraft crown compartment and validated against experimental data obtained from a 1:1 scale compartment rig. The crown compartment is defined as the confined area between the upper fuselage and the passenger cabin in a single aisle commercial aircraft. CFD results were utilised to extract average quantities (temperature and heat fluxes) and characteristic parameters (heat transfer coefficients) to generate CTFMs. The CTFMs have then been compared with the results obtained from the detailed models showing average errors for temperature predictions lower than 5%. This error can be deemed acceptable when compared to the nominal experimental error associated with the thermocouple measurements.
The CTFMs methodology developed allows to generate accurate reduced order models where accuracy is restricted to the region of Boundary Conditions applied. This limitation arises from the sensitivity of the internal flow structures to the applied boundary condition set. CTFMs thus generated can be then integrated in complex numerical modelling of whole fuselage sections.
Further steps in the development of an exhaustive methodology would be the implementation of a logic ruled based approach to extract directly from the CFD simulations numbers and positions of the nodes for the CTFM.
Resumo:
This paper presents a statistical model for the thermal behaviour of the line model based on lab tests and field measurements. This model is based on Partial Least Squares (PLS) multi regression and is used for the Dynamic Line Rating (DLR) in a wind intensive area. DLR provides extra capacity to the line, over the traditional seasonal static rating, which makes it possible to defer the need for reinforcement the existing network or building new lines. The proposed PLS model has a number of appealing features; the model is linear, so it is straightforward to use for predicting the line rating for future periods using the available weather forecast. Unlike the available physical models, the proposed model does not require any physical parameters of the line, which avoids the inaccuracies resulting from the errors and/or variations in these parameters. The developed model is compared with physical model, the Cigre model, and has shown very good accuracy in predicting the conductor temperature as well as in determining the line rating for future time periods.
Resumo:
In recent years, wide-field sky surveys providing deep multi-band imaging have presented a new path for indirectly characterizing the progenitor populations of core-collapse supernovae (SN): systematic light curve studies. We assemble a set of 76 grizy-band Type IIP SN light curves from Pan-STARRS1, obtained over a constant survey program of 4 years and classified using both spectroscopy and machine learning-based photometric techniques. We develop and apply a new Bayesian model for the full multi-band evolution of each light curve in the sample. We find no evidence of a sub-population of fast-declining explosions (historically referred to as "Type IIL" SNe). However, we identify a highly significant relation between the plateau phase decay rate and peak luminosity among our SNe IIP. These results argue in favor of a single parameter, likely determined by initial stellar mass, predominantly controlling the explosions of red supergiants. This relation could also be applied for supernova cosmology, offering a standardizable candle good to an intrinsic scatter of 0.2 mag. We compare each light curve to physical models from hydrodynamic simulations to estimate progenitor initial masses and other properties of the Pan-STARRS1 Type IIP SN sample. We show that correction of systematic discrepancies between modeled and observed SN IIP light curve properties and an expanded grid of progenitor properties, are needed to enable robust progenitor inferences from multi-band light curve samples of this kind. This work will serve as a pathfinder for photometric studies of core-collapse SNe to be conducted through future wide field transient searches.
Resumo:
Aims: We report simultaneous observations of the nearby flare star Proxima Centauri with VLT/UVES and XMM-Newton over three nights in March 2009. Our optical and X-ray observations cover the star's quiescent state, as well as its flaring activity and allow us to probe the stellar atmospheric conditions from the photosphere into the chromosphere, and then the corona during its different activity stages. Methods: Using the X-ray data, we investigate variations in coronal densities and abundances and infer loop properties for an intermediate-sized flare. The optical data are used to investigate the magnetic field and its possible variability, to construct an emission line list for the chromosphere, and use certain emission lines to construct physical models of Proxima Centauri's chromosphere. Results: We report the discovery of a weak optical forbidden Fe xiii line at 3388 Å during the more active states of Proxima Centauri. For the intermediate flare, we find two secondary flare events that may originate in neighbouring loops, and discuss the line asymmetries observed during this flare in H i, He i, and Ca ii lines. The high time-resolution in the Hα line highlights strong temporal variations in the observed line asymmetries, which re-appear during a secondary flare event. We also present theoretical modelling with the stellar atmosphere code PHOENIX to construct flaring chromospheric models. Based on observations collected at the European Southern Observatory, Paranal, Chile, 082.D-0953A and on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member states and NASA.Full Table 6 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/534/A133
Resumo:
In the reinsurance market, the risks natural catastrophes pose to portfolios of properties must be quantified, so that they can be priced, and insurance offered. The analysis of such risks at a portfolio level requires a simulation of up to 800 000 trials with an average of 1000 catastrophic events per trial. This is sufficient to capture risk for a global multi-peril reinsurance portfolio covering a range of perils including earthquake, hurricane, tornado, hail, severe thunderstorm, wind storm, storm surge and riverine flooding, and wildfire. Such simulations are both computation and data intensive, making the application of high-performance computing techniques desirable.
In this paper, we explore the design and implementation of portfolio risk analysis on both multi-core and many-core computing platforms. Given a portfolio of property catastrophe insurance treaties, key risk measures, such as probable maximum loss, are computed by taking both primary and secondary uncertainties into account. Primary uncertainty is associated with whether or not an event occurs in a simulated year, while secondary uncertainty captures the uncertainty in the level of loss due to the use of simplified physical models and limitations in the available data. A combination of fast lookup structures, multi-threading and careful hand tuning of numerical operations is required to achieve good performance. Experimental results are reported for multi-core processors and systems using NVIDIA graphics processing unit and Intel Phi many-core accelerators.
Resumo:
Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schrödinger equation for low-dimensionality systems.