959 resultados para Recurrent associative self-organizing map


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agents inhabiting large scale environments are faced with the problem of generating maps by which they can navigate. One solution to this problem is to use probabilistic roadmaps which rely on selecting and connecting a set of points that describe the interconnectivity of free space. However, the time required to generate these maps can be prohibitive, and agents do not typically know the environment in advance. In this paper we show that the optimal combination of different point selection methods used to create the map is dependent on the environment, no point selection method dominates. This motivates a novel self-adaptive approach for an agent to combine several point selection methods. The success rate of our approach is comparable to the state of the art and the generation cost is substantially reduced. Self-adaptation therefore enables a more efficient use of the agent's resources. Results are presented for both a set of archetypal scenarios and large scale virtual environments based in Second Life, representing real locations in London.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the primary visual cortex, neurons with similar physiological features are clustered together in columns extending through all six cortical layers. These columns form modular orientation preference maps. Long-range lateral fibers are associated to the structure of orientation maps since they do not connect columns randomly; they rather cluster in regular intervals and interconnect predominantly columns of neurons responding to similar stimulus features. Single orientation preference maps – the joint activation of domains preferring the same orientation - were observed to emerge spontaneously and it was speculated whether this structured ongoing activation could be caused by the underlying patchy lateral connectivity. Since long-range lateral connections share many features, i.e. clustering, orientation selectivity, with visual inter-hemispheric connections (VIC) through the corpus callosum we used the latter as a model for long-range lateral connectivity. In order to address the question of how the lateral connectivity contributes to spontaneously generated maps of one hemisphere we investigated how these maps react to the deactivation of VICs originating from the contralateral hemisphere. To this end, we performed experiments in eight adult cats. We recorded voltage-sensitive dye (VSD) imaging and electrophysiological spiking activity in one brain hemisphere while reversible deactivating the other hemisphere with a cooling technique. In order to compare ongoing activity with evoked activity patterns we first presented oriented gratings as visual stimuli. Gratings had 8 different orientations distributed equally between 0º and 180º. VSD imaged frames obtained during ongoing activity conditions were then compared to the averaged evoked single orientation maps in three different states: baseline, cooling and recovery. Kohonen self-organizing maps were also used as a means of analysis without prior assumption (like the averaged single condition maps) on ongoing activity. We also evaluated if cooling had a differential effect on evoked and ongoing spiking activity of single units. We found that deactivating VICs caused no spatial disruption on the structure of either evoked or ongoing activity maps. The frequency with which a cardinally preferring (0º or 90º) map would emerge, however, decreased significantly for ongoing but not for evoked activity. The same result was found by training self-organizing maps with recorded data as input. Spiking activity of cardinally preferring units also decreased significantly for ongoing when compared to evoked activity. Based on our results we came to the following conclusions: 1) VICs are not a determinant factor of ongoing map structure. Maps continued to be spontaneously generated with the same quality, probably by a combination of ongoing activity from local recurrent connections, thalamocortical loop and feedback connections. 2) VICs account for a cardinal bias in the temporal sequence of ongoing activity patterns, i.e. deactivating VIC decreases the probability of cardinal maps to emerge spontaneously. 3) Inter- and intrahemispheric long-range connections might serve as a grid preparing primary visual cortex for likely junctions in a larger visual environment encompassing the two hemifields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the primary visual cortex, neurons with similar physiological features are clustered together in columns extending through all six cortical layers. These columns form modular orientation preference maps. Long-range lateral fibers are associated to the structure of orientation maps since they do not connect columns randomly; they rather cluster in regular intervals and interconnect predominantly columns of neurons responding to similar stimulus features. Single orientation preference maps – the joint activation of domains preferring the same orientation - were observed to emerge spontaneously and it was speculated whether this structured ongoing activation could be caused by the underlying patchy lateral connectivity. Since long-range lateral connections share many features, i.e. clustering, orientation selectivity, with visual inter-hemispheric connections (VIC) through the corpus callosum we used the latter as a model for long-range lateral connectivity. In order to address the question of how the lateral connectivity contributes to spontaneously generated maps of one hemisphere we investigated how these maps react to the deactivation of VICs originating from the contralateral hemisphere. To this end, we performed experiments in eight adult cats. We recorded voltage-sensitive dye (VSD) imaging and electrophysiological spiking activity in one brain hemisphere while reversible deactivating the other hemisphere with a cooling technique. In order to compare ongoing activity with evoked activity patterns we first presented oriented gratings as visual stimuli. Gratings had 8 different orientations distributed equally between 0º and 180º. VSD imaged frames obtained during ongoing activity conditions were then compared to the averaged evoked single orientation maps in three different states: baseline, cooling and recovery. Kohonen self-organizing maps were also used as a means of analysis without prior assumption (like the averaged single condition maps) on ongoing activity. We also evaluated if cooling had a differential effect on evoked and ongoing spiking activity of single units. We found that deactivating VICs caused no spatial disruption on the structure of either evoked or ongoing activity maps. The frequency with which a cardinally preferring (0º or 90º) map would emerge, however, decreased significantly for ongoing but not for evoked activity. The same result was found by training self-organizing maps with recorded data as input. Spiking activity of cardinally preferring units also decreased significantly for ongoing when compared to evoked activity. Based on our results we came to the following conclusions: 1) VICs are not a determinant factor of ongoing map structure. Maps continued to be spontaneously generated with the same quality, probably by a combination of ongoing activity from local recurrent connections, thalamocortical loop and feedback connections. 2) VICs account for a cardinal bias in the temporal sequence of ongoing activity patterns, i.e. deactivating VIC decreases the probability of cardinal maps to emerge spontaneously. 3) Inter- and intrahemispheric long-range connections might serve as a grid preparing primary visual cortex for likely junctions in a larger visual environment encompassing the two hemifields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to analyse the colocation patterns of industries and firms. We study the spatial distribution of firms from different industries at a microgeographic level and from this identify the main reasons for this locational behaviour. The empirical application uses data from Mercantile Registers of Spanish firms (manufacturers and services). Inter-sectorial linkages are shown using self-organizing maps. Key words: clusters, microgeographic data, self-organizing maps, firm location JEL classification: R10, R12, R34

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of magnetic nanoparticles with monodispere size distributions, their self assembly into ordered arrays and their magnetic behavior as a function of structural order (ferrofluids and 2D assemblies) are presented. Magnetic colloids of monodispersed, passivated, cobalt nanocrystals were produced by the rapid pyrolysis of cobalt carbonyl in solution. The size, size distribution (std. dev.< 5%) and the shape of the nanocrystals were controlled by varying the surfactant, its concentration, the reaction rate and the reaction temperature. The Co particles are defect-free single crystals with a complex cubic structure related to the beta phase of manganese (epsilon-Co). In the 2D assembly, a collective behavior was observed in the low-field susceptibility measurements where the magnetization of the zero field cooled process increases steadily and the magnetization of the field cooling process is independent the temperature. This was different from the observed behavior in a sample comprised of disordered interacting particles. A strong paramagnetic contribution appears at very low temperatures where the magnetization increases drastically after field cooling the sample. This has been attributed to the Co surfactant-particle interface since no magnetic atomic impurities are present in these samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to evaluate sampling density on the prediction accuracy of soil orders, with high spatial resolution, in a viticultural zone of Serra Gaúcha, Southern Brazil. A digital elevation model (DEM), a cartographic base, a conventional soil map, and the Idrisi software were used. Seven predictor variables were calculated and read along with soil classes in randomly distributed points, with sampling densities of 0.5, 1, 1.5, 2, and 4 points per hectare. Data were used to train a decision tree (Gini) and three artificial neural networks: adaptive resonance theory, fuzzy ARTMap; self‑organizing map, SOM; and multi‑layer perceptron, MLP. Estimated maps were compared with the conventional soil map to calculate omission and commission errors, overall accuracy, and quantity and allocation disagreement. The decision tree was less sensitive to sampling density and had the highest accuracy and consistence. The SOM was the less sensitive and most consistent network. The MLP had a critical minimum and showed high inconsistency, whereas fuzzy ARTMap was more sensitive and less accurate. Results indicate that sampling densities used in conventional soil surveys can serve as a reference to predict soil orders in Serra Gaúcha.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the phenomenon of deprivation in contemporary Switzerland through the adoption of a multidimensional, dynamic approach. By applying Self Organizing Maps (SOM) to a set of 33 non-monetary indicators from the 2009 wave of the Swiss Household Panel (SHP), we identified 13 prototypical forms (or clusters) of well-being, financial vulnerability, psycho-physiological fragility and deprivation within a topological dimensional space. Then new data from the previous waves (2003 to 2008) were classified by the SOM model, making it possible to estimate the weight of the different clusters in time and reconstruct the dynamics of stability and mobility of individuals within the map. Looking at the transition probabilities between year t and year t+1, we observed that the paths of mobility which catalyze the largest number of observations are those connecting clusters that are adjacent on the topological space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-organization is a growing interdisciplinary field of research about a phenomenon that can be observed in the Universe, in Nature and in social contexts. Research on self-organization tries to describe and explain forms, complex patterns and behaviours that arise from a collection of entities without an external organizer. As researchers in artificial systems, our aim is not to mimic self-organizing phenomena arising in Nature, but to understand and to control underlying mechanisms allowing desired emergence of forms, complex patterns and behaviours. Rather than attempting to eliminate such self-organization in artificial systems, we think that this might be deliberately harnessed in order to reach desirable global properties. In this paper we analyze three forms of self-organization: stigmergy, reinforcement mechanisms and cooperation. The amplification phenomena founded in stigmergic process or in reinforcement process are different forms of positive feedbacks that play a major role in building group activity or social organization. Cooperation is a functional form for self-organization because of its ability to guide local behaviours in order to obtain a relevant collective one. For each forms of self-organisation, we present a case study to show how we transposed it to some artificial systems and then analyse the strengths and weaknesses of such an approach

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La monografía presenta la auto-organización sociopolítica como la mejor manera de lograr patrones organizados en los sistemas sociales humanos, dada su naturaleza compleja y la imposibilidad de las tareas computacionales de los regímenes políticos clásico, debido a que operan con control jerárquico, el cual ha demostrado no ser óptimo en la producción de orden en los sistemas sociales humanos. En la monografía se extrapola la teoría de la auto-organización en los sistemas biológicos a las dinámicas sociopolíticas humanas, buscando maneras óptimas de organizarlas, y se afirma que redes complejas anárquicas son la estructura emergente de la auto-organización sociopolítica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been shown through a number of experiments that neural networks can be used for a phonetic typewriter. Algorithms can be looked on as producing self-organizing feature maps which correspond to phonemes. In the Chinese language the utterance of a Chinese character consists of a very simple string of Chinese phonemes. With this as a starting point, a neural network feature map for Chinese phonemes can be built up. In this paper, feature map structures for Chinese phonemes are discussed and tested. This research on a Chinese phonetic feature map is important both for Chinese speech recognition and for building a Chinese phonetic typewriter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new image data fusion scheme by combining median filtering with self-organizing feature map (SOFM) neural networks. The scheme consists of three steps: (1) pre-processing of the images, where weighted median filtering removes part of the noise components corrupting the image, (2) pixel clustering for each image using self-organizing feature map neural networks, and (3) fusion of the images obtained in Step (2), which suppresses the residual noise components and thus further improves the image quality. It proves that such a three-step combination offers an impressive effectiveness and performance improvement, which is confirmed by simulations involving three image sensors (each of which has a different noise structure).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional content-based image retrieval (CBIR) systems use low-level features such as colors, shapes, and textures of images. Although, users make queries based on semantics, which are not easily related to such low-level characteristics. Recent works on CBIR confirm that researchers have been trying to map visual low-level characteristics and high-level semantics. The relation between low-level characteristics and image textual information has motivated this article which proposes a model for automatic classification and categorization of words associated to images. This proposal considers a self-organizing neural network architecture, which classifies textual information without previous learning. Experimental results compare the performance results of the text-based approach to an image retrieval system based on low-level features. (c) 2008 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solar-powered vehicle activated signs (VAS) are speed warning signs powered by batteries that are recharged by solar panels. These signs are more desirable than other active warning signs due to the low cost of installation and the minimal maintenance requirements. However, one problem that can affect a solar-powered VAS is the limited power capacity available to keep the sign operational. In order to be able to operate the sign more efficiently, it is proposed that the sign be appropriately triggered by taking into account the prevalent conditions. Triggering the sign depends on many factors such as the prevailing speed limit, road geometry, traffic behaviour, the weather and the number of hours of daylight. The main goal of this paper is therefore to develop an intelligent algorithm that would help optimize the trigger point to achieve the best compromise between speed reduction and power consumption. Data have been systematically collected whereby vehicle speed data were gathered whilst varying the value of the trigger speed threshold. A two stage algorithm is then utilized to extract the trigger speed value. Initially the algorithm employs a Self-Organising Map (SOM), to effectively visualize and explore the properties of the data that is then clustered in the second stage using K-means clustering method. Preliminary results achieved in the study indicate that using a SOM in conjunction with K-means method is found to perform well as opposed to direct clustering of the data by K-means alone. Using a SOM in the current case helped the algorithm determine the number of clusters in the data set, which is a frequent problem in data clustering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatitis C is a worldwide public health problem. The available therapies are limited by their partial effectiveness and with meaningful side-effects. Sesquiterpene lactones (SLs) are a group of natural products with a wide variety of chemical structures and biological activities associated. There are few studies about the influence of the molecular structure of SLs for the anti-hepatitis C virus activity. In the present work, SLs are investigated in a subgenomic RNA replicon assay system and were analyzed using multiple linear regression along with self-organizing maps with DRAGON descriptors in order to identify the structural requirements for their biological activity and to predict the inhibitory potency of SLs. Characteristics such as stereochemistry and electronic effects demonstrated to be important for their anti-HCV activity, and the SOM produced a clear separation betwenn active and inactive compounds. Therefore, it is possible to use this map as a filter for virtual screening to predict the anti-HCV activity of SLs.