883 resultados para Reconfigurable microstrip antennas
Resumo:
Planar periodic metallic arrays behave as artificial magnetic conductor (AMC) surfaces when placed on a grounded dielectric substrate and they introduce a zero degrees reflection phase shift to incident waves. In this paper the AMC operation of single-layer arrays without vias is studied using a resonant cavity model and a new application to high-gain printed antennas is presented. A ray analysis is employed in order to give physical insight into the performance of AMCs and derive design guidelines. The bandwidth and center frequency of AMC surfaces are investigated using full-wave analysis and the qualitative predictions of the ray model are validated. Planar AMC surfaces are used for the first time as the ground plane in a high-gain microstrip patch antenna with a partially reflective surface as superstrate. A significant reduction of the antenna profile is achieved. A ray theory approach is employed in order to describe the functioning of the antenna and to predict the existence of quarter wavelength resonant cavities.
Resumo:
In this paper, the on-body performance of a range of wearable antennas was investigated by measuring vertical bar S-21 vertical bar path gain between two devices mounted on tissue-equivalent numerical and experimental phantoms, representative of human muscle tissue at 2.45 GHz. In particular, the study focused on the performance of a compact higher mode microstrip patch antenna (HMMPA) with a profile as low as lambda/20. The 5- and 10-mm-high HMMPA prototypes had an impedance bandwidth of 6.7% and 8.6%, respectively, sufficient for the operating requirements of the 2.45-GHz industrial, scientific, and medical (ISM) band and both antennas offered 11-dB higher path gain compared to a fundamental-mode microstrip patch antenna. It was also dernonstrated that a 7-dB improvement in path gain can be obtained for a fundamental-mode patch through the addition of a shortening wall. Notably, on-body HMMPA performance was comparable to a quarter wave monopole antenna on the same size of ground-plane, mounted normal to the tissue surface, indicating that the low-profile and physically more robust antenna is a promising solution for bodyworn antenna applications.
Resumo:
The design is described of a double layer frequency selective surface which can produce a differential phase shift of 180 ° as the wave propagates through it at normal incidence. The hand of an applied circularly polarized signal is reversed due to the 180° phase shift, and it is demonstrated that the exit circularly polarized output signal can be phase advanced or phase retarded by 180 ° upon rotation of the elements comprising the structure. This feature allows the surface to act as a spatial phase shifter. In this paper the beam steering capabilities of a 10 × 10 array of such elements are demonstrated. Here the individual elements comprising the array are rotated relative to each other in order to generate a progressive phase shift. At normal incidence the 3 dB Axial Ratio Bandwidth for LHCP to RHCP conversion is 5.3% and the insertion loss was found to be -2.3 dB, with minimum axial ratio of 0.05 dB. This array is shown to be able to steer a beam from -40 ° to +40 ° while holding axial ratio at the pointing angle to below 4 dB. The measured radiation patterns match the theoretical calculation and full-wave simulation results. © 2010 IEEE.
Resumo:
The authors describe how a standard Rotman lens design can be readily adapted in order to allow reconfigurable beam
forming. This is achieved by applying concurrent excitations to the modified Rotman lens. A rationale for the design and
underlying behaviour of the modified, phase-aligned, Rotman lens as well as the deficiencies of a conventional Rotman lens
in this mode of operation are provided. Simulated and measured results are provided in order to illustrate the feasibility of the
approach suggested.
Resumo:
A reconfigurable reflectarray which exploits the dielectric anisotropy of liquid crystals (LC) has been designed to operate in the frequency range from 96 to 104 GHz. The unit cells are composed of three unequal length parallel dipoles placed above an LC substrate. The reflectarray has been designed using an accurate model which includes the effects of anisotropy and inhomogeneity. An effective permittivity that accounts for the real effects of the LC has also been used to simplify the analysis and design of the unit cells. The geometrical parameters of the cells have been adjusted to simultaneously improve the bandwidth, maximize the tunable phase-range and reduce the sensitivity to the angle of incidence. The performance of the LC based unit cells has been experimentally evaluated by measuring the reflection amplitude and phase of a reflectarray consisting of 52x54 identical cells. The good agreement between measurements and simulations validate the analysis and design techniques and demonstrate the capabilities of the proposed reflectarray to provide beam scanning in F band.
Resumo:
A new strategy for remote reconfiguration of an antenna array far field radiation pattern is described. The scheme uses a pilot tone co-transmitted with a carrier signal from a location distant from that of a receive antenna array whose far field pattern is to be reconfigured. By mixing the co-transmitted signals locally at each antenna element in the array an IF signal is formed which defines an equivalent array spacing that can be made variable by tuning the frequency of the pilot tone with respect to the RF carrier. This makes the antenna array factor hence far field spatial characteristic reconfigurable on receive. For a 10 x 1 microstrip patch element array we show that the receive pattern can be made to vary from 35 to 10 degrees half power beam width as the difference frequency between the pilot and the carrier at 2.45 GHz varies between 10 MHz and 500 MHz carrier.
Resumo:
Reconfigurable bistate metasurfaces composed of interwoven spiral arrays with embedded pin diodes are proposed for single and dual polarisation operation. The switching capability is enabled by pin diodes that change the array response between transmission and reflection modes at the specified frequencies. The spiral conductors forming the metasurface also supply the dc bias for controlling pin diodes, thus avoiding the need of additional bias circuitry that can cause parasitic interference and affect the metasurface response. The simulation results show that proposed active metasurfaces exhibit good isolation between transmission and reflection states, while retaining excellent angular and polarisation stability with the large fractional bandwidth (FBW) inherent to the original passive arrays. © 2014 A. Vallecchi et al.
Resumo:
A new type of active frequency selective surface (AFSS) is proposed to realise a voltage controlled bi-state (transparent and reflecting) response at the specified frequencies. The bi-state switching is achieved by combining a passive array of interleaved spiral slots in conducting screens and active dipole arrays with integrated pin diodes at the opposite sides of a thin dielectric substrate. Simulation results show that such active surfaces have high isolation between the transparency and reflection states, while retaining the merits of substantially sub-wavelength response of the unit cell and large fractional bandwidths (FBWs) inherent to the original passive interwoven spiral arrays. Potential applications include reconfigurable and controllable electromagnetic architecture of buildings.
Resumo:
A miniature optically reconfigurable ultra-wideband CPW bandpass filter is proposed. With the optical switch in the ON state (200W), the circuit behaves as a bandpass filter while in the OFF state (0W), the circuit behaves as a bandstop filter within the same frequency band. The simulation results of the proposed bandpass/bandstop filter are presented.
Resumo:
A compact highly linear microstrip dual - mode optically switchable filter and a reconfigurable power amplifier are presented. The key characteristics of the dual - mode switchable filter are investigated and described. A second order filter design procedure is outlined to facilitate the realisation of Butterworth and Chebyshev functions. The proposed filter was built and tested with an optical switch, which comprised of a silicon dice acti vated using near infrared light. The measured and simulated results are in good agreement. The measured insertion loss in the ON state was 3.0 dB the isolation in the OFF state was 45 dB at the centre frequency. An evaluation of filter distortion is presen ted for digitally modulated M - QAM and M - QAM OFDM singals.
Resumo:
A novel, compact and highly selective microstrip bandpass filter with bandwidth reconfigurability for ultra-wideband (UWB) applications is presented. The proposed design uses stepped impedance resonator (SIR) for realization of bandpass filter (BPF) and employs a single varactor diode (BB135-NXP) for the purpose of reconfiguring bandwidth. Additionally, to improve the selectivity between passband edges, a cross-coupling between I/O feed lines is introduced which generated pairs of attenuation poles at each side of the passband. Measurements on a fabricated reconfigurable filter confirm the accuracy of the design procedure. Measured responses show good agreement with simulation. The proposed filter is able to achieve significant size reduction (8.5 mm × 7.1 mm excluding the feeding ports) as compared to the conventional bandpass filters with reconfigurable bandwidth.
Resumo:
This paper describes the design of a textile microstrip antenna for 2.4 GHz. Two different fabrics are used: one for the dielectric part and another one for the conductor part. The dielectric constant of the dielectric fabric is determined experimentally. The input matching is studied by electromagnetic simulation and experimentally. Since the antenna is meant to be incorporated in the user's clothe, the effect that the antenna bending has on the matching level is also investigated both theoretically and experimentally.