981 resultados para Recombinant human BMP-7


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: In a recent study, we demonstrated that mesenchymal stem cells (MSCs) derived from the synovial membranes of bovine shoulder joints could differentiate into chondrocytes when cultured in alginate. The purpose of the present study was to establish the conditions under which synovial MSCs derived from aging human donors can be induced to undergo chondrogenic differentiation using the same alginate system. METHODS: MSCs were obtained by digesting the knee-joint synovial membranes of osteoarthritic human donors (aged 59-76 years), and expanded in monolayer cultures. The cells were then seeded at a numerical density of 4x10(6)/ml within discs of 2% alginate, which were cultured in serum-containing or serum-free medium (the latter being supplemented with 1% insulin, transferrin, selenium (ITS). The chondrogenic differentiation capacity of the cells was tested by exposing them to the morphogens transforming growth factor-beta1 (TGF-beta1), TGF-beta2, TGF-beta3, insulin-like growth factor-1 (IGF-1), bone morphogenetic protein-2 (BMP-2) and BMP-7, as well as to the synthetic glucocorticoid dexamethasone. The relative mRNA levels of collagen types I and II, of aggrecan and of Sox9 were determined quantitatively by the real-time polymerase chain reaction (PCR). The extracellular deposition of proteoglycans was evaluated histologically after staining with Toluidine Blue, and that of type-II collagen by immunohistochemistry. RESULTS: BMP-2 induced the chondrogenic differentiation of human synovial MSCs in a dose-dependent manner. The response elicited by BMP-7 was comparable. Both of these agents were more potent than TGF-beta1. A higher level of BMP-2-induced chondrogenic differentiation was achieved in the absence than in the presence of serum. In the presence of dexamethasone, the BMP-2-induced expression of mRNAs for aggrecan and type-II collagen was suppressed; the weaker TGF-beta1-induced expression of these chondrogenic markers was not obviously affected. CONCLUSIONS: We have demonstrated that synovial MSCs derived from the knee joints of aging human donors possess chondrogenic potential. Under serum-free culturing conditions and in the absence of dexamethasone, BMP-2 and BMP-7 were the most potent inducers of this transformation process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe herein some immunological properties of human fetal bone cells recently tested for bone tissue-engineering applications. Adult mesenchymal stem cells (MSCs) and osteoblasts were included in the study for comparison. Surface markers involved in bone metabolism and immune recognition were analyzed using flow cytometry before and after differentiation or treatment with cytokines. Immunomodulatory properties were studied on activated peripheral blood mononuclear cells (PBMCs). The immuno-profile of fetal bone cells was further investigated at the gene expression level. Fetal bone cells and adult MSCs were positive for Stro-1, alkaline phosphatase, CD10, CD44, CD54, and beta2-microglobulin, but human leukocyte antigen (HLA)-I and CD80 were less present than on adult osteoblasts. All cells were negative for HLA-II. Treatment with recombinant human interferon gamma increased the presence of HLA-I in adult cells much more than in fetal cells. In the presence of activated PBMCs, fetal cells had antiproliferative effects, although with patterns not always comparable with those of adult MSCs and osteoblasts. Because of the immunological profile, and with their more-differentiated phenotype than of stem cells, fetal bone cells present an interesting potential for allogeneic cell source in tissue-engineering applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interleukin-8 (IL-8), a proinflammatory cytokine produced by human monocytes, fibroblasts, and endothelial and epithelial cells, is effective not only on cells and tissues of human beings but also on those of several animal species. We investigated the importance of recombinant human IL-8 for the activation of canine neutrophils in vitro and its potential for inducing inflammation in vivo. Shape change (10(-9)-10(-7) M IL-8) and chemotaxis (10(-10)-10(-6) M IL-8) assays were used to determine the activation of canine neutrophils in vitro. Chemotaxis was induced by IL-8 at doses > 10(-8) M with a maximum response at 10(-6) M. A rapid shape change of comparable intensity was elicited by 10(-9)-10(-7) M IL-8. Thirty minutes after intradermal injection of 10(-9) moles of IL-8, emigration of neutrophils could be observed and became more intense at 60 minutes and 240 minutes, respectively. Zymosan-activated canine plasma, which served as a positive control, induced a rapid, massive, and more diffuse neutrophil accumulation, whereas the reaction after IL-8 was weaker but still significant. The neutrophil accumulation after IL-8 was preferentially located in perivenular areas of the deep dermis. Recombinant human IL-8 is capable of activating canine neutrophils in vitro and is able to generate significant neutrophil accumulation in dog skin. Its activity is lower than that in human, rabbit, and rat systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NF-κB is a major transcription factor consisting of 50(p50)- and 65(p65)-kDa proteins that controls the expression of various genes, among which are those encoding cytokines, cell adhesion molecules, and inducible NO synthase (iNOS). After initial activation of NF-κB, which involves release and proteolysis of a bound inhibitor, essential cysteine residues are maintained in the active reduced state through the action of thioredoxin and thioredoxin reductase. In the present study, activation of NF-κB in human T cells and lung adenocarcinoma cells was induced by recombinant human tumor necrosis factor α or bacterial lipopolysaccharide. After lipopolysaccharide activation, nuclear extracts were treated with increasing concentrations of selenite, and the effects on DNA-binding activity of NF-κB were examined. Binding of NF-κB to nuclear responsive elements was decreased progressively by increasing selenite levels and, at 7 μM selenite, DNA-binding activity was completely inhibited. Selenite inhibition was reversed by addition of a dithiol, DTT. Proportional inhibition of iNOS activity as measured by decreased NO products in the medium (NO2− and NO3−) resulted from selenite addition to cell suspensions. This loss of iNOS activity was due to decreased synthesis of NO synthase protein. Selenium at low essential levels (nM) is required for synthesis of redox active selenoenzymes such as glutathione peroxidases and thioredoxin reductase, but in higher toxic levels (>5–10 μM) selenite can react with essential thiol groups on enzymes to form RS–Se–SR adducts with resultant inhibition of enzyme activity. Inhibition of NF-κB activity by selenite is presumed to be the result of adduct formation with the essential thiols of this transcription factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

C2-α-Mannosyltryptophan was discovered in human RNase 2, an enzyme that occurs in eosinophils and is involved in host defense. It represents a novel way of attaching carbohydrate to a protein in addition to the well-known N- and O-glycosylations. The reaction is specific, as in RNase 2 Trp-7, but never Trp-10, which is modified. In this article, we address which structural features provide the specificity of the reaction. Expression of chimeras of RNase 2 and nonglycosylated RNase 4 and deletion mutants in HEK293 cells identified residues 1–13 to be sufficient for C-mannosylation. Site-directed mutagenesis revealed the sequence Trp-x-x-Trp, in which the first Trp becomes mannosylated, as the specificity determinant. The Trp residue at position +3 can be replaced by Phe, which reduces the efficiency of the reaction threefold. Interpretation of the data in the context of the three-dimensional structure of RNase 2 strongly suggests that the primary, rather than the tertiary, structure forms the determinant. The sequence motif occurs in 336 mammalian proteins currently present in protein databases. Two of these proteins were analyzed protein chemically, which showed partial C-glycosylation of recombinant human interleukin 12. The frequent occurrence of the protein recognition motif suggests that C-glycosides could be part of the structure of more proteins than assumed so far.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have identified homologs of a human BMP receptor-associated molecule BRAM1 in Caenorhabditis elegans. One of them, BRA-1, has been found to bind DAF-1, the type I receptor in the DAF-7 transforming growth factor-β pathway through the conserved C-terminal region. As analyzed using a BRA-1∷GFP (green fluorescent protein) fusion gene product, the bra-1 gene is expressed in amphid neurons such as ASK, ASI, and ASG, where daf-1 is also expressed. A loss-of-function mutation in bra-1 exhibits robust suppression of the Daf-c phenotype caused by the DAF-7 pathway mutations. We propose that BRA-1 represents a novel class of receptor-associated molecules that negatively regulate transforming growth factor-β pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer is a disease characterized by defects in growth control, and tumor cells often display abnormal patterns of cellular differentiation. The combination of recombinant human fibroblast interferon and the antileukemic agent mezerein corrects these abnormalities in cultured human melanoma cells resulting in irreversible growth arrest and terminal differentiation. Subtraction hybridization identifies a melanoma differentiation associated gene (mda-7) with elevated expression in growth arrested and terminally differentiated human melanoma cells. Colony formation decreases when mda-7 is transfected into human tumor cells of diverse origin and with multiple genetic defects. In contrast, the effects of mda-7 on growth and colony formation in transient transfection assays with normal cells, including human mammary epithelial, human skin fibroblast, and rat embryo fibroblast, is quantitatively less than that found with cancer cells. Tumor cells expressing elevated mda-7 display suppression in monolayer growth and anchorage independence. Infection with a recombinant type 5 adenovirus expressing antisense mda-7 eliminates mda-7 suppression of the in vitro growth and transformed phenotype. The ability of mda-7 to suppress growth in cancer cells not expressing or containing defects in both the retinoblastoma (RB) and p53 genes indicates a lack of involvement of these critical tumor suppressor elements in mediating mda-7-induced growth inhibition. The lack of protein homology of mda-7 with previously described growth suppressing genes and the differential effect of this gene on normal versus cancer cells suggests that mda-7 may represent a new class of cancer growth suppressing genes with antitumor activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expression of human keratinocyte growth factor (KGF/FGF-7) was directed to epithelial cells of the developing embryonic lung of transgenic mice disrupting normal pulmonary morphogenesis during the pseudoglandular stage of development. By embryonic day 15.5(E15.5), lungs of transgenic surfactant protein C (SP-C)-KGF mice resembled those of humans with pulmonary cystadenoma. Lungs were cystic, filling the thoracic cavity, and were composed of numerous dilated saccules lined with glycogen-containing columnar epithelial cells. The normal distribution of SP-C proprotein in the distal regions of respiratory tubules was disrupted. Columnar epithelial cells lining the papillary structures stained variably and weakly for this distal respiratory cell marker. Mesenchymal components were preserved in the transgenic mouse lungs, yet the architectural relationship of the epithelium to the mesenchyme was altered. SP-C-KGF transgenic mice failed to survive gestation to term, dying before E17.5. Culturing mouse fetal lung explants in the presence of recombinant human KGF also disrupted branching morphogenesis and resulted in similar cystic malformation of the lung. Thus, it appears that precise temporal and spatial expression of KGF is likely to play a crucial role in the control of branching morphogenesis during fetal lung development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone morphogenetic proteins (BMPs) are members of the transforming growth factor beta superfamily. Several members of this family have been shown to transduce their signals through binding to type I and type II serine-(threonine) kinase receptors. Here we report the cDNA cloning and characterization of a human type II receptor for BMPs (BMPR-II), which is distantly related to DAF-4, a BMP type II receptor from Caenorhabditis elegans. In transfected COS-1 cells, osteogenic protein (OP)-1/BMP-7, and less efficiently BMP-4, bound to BMPR-II. BMPR-II bound ligands only weakly alone, but the binding was facilitated by the presence of previously identified type I receptors for BMPs. Binding of OP-1/BMP-7 to BMPR-II was also observed in nontransfected cell lines. Moreover, a transcriptional activation signal was transduced by BMPR-II in the presence of type I receptors after stimulation by OP-1/BMP-7.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is great interindividual variability in the response to GH therapy. Ascertaining genetic factors can improve the accuracy of growth response predictions. Suppressor of cytokine signaling (SOCS)-2 is an intracellular negative regulator of GH receptor (GHR) signaling. The objective of the study was to assess the influence of a SOCS2 polymorphism (rs3782415) and its interactive effect with GHR exon 3 and -202 A/C IGFBP3 (rs2854744) polymorphisms on adult height of patients treated with recombinant human GH (rhGH). Genotypes were correlated with adult height data of 65 Turner syndrome (TS) and 47 GH deficiency (GHD) patients treated with rhGH, by multiple linear regressions. Generalized multifactor dimensionality reduction was used to evaluate gene-gene interactions. Baseline clinical data were indistinguishable among patients with different genotypes. Adult height SD scores of patients with at least one SOCS2 single-nucleotide polymorphism rs3782415-C were 0.7 higher than those homozygous for the T allele (P < .001). SOCS2 (P = .003), GHR-exon 3 (P= .016) and -202 A/C IGFBP3 (P = .013) polymorphisms, together with clinical factors accounted for 58% of the variability in adult height and 82% of the total height SD score gain. Patients harboring any two negative genotypes in these three different loci (homozygosity for SOCS2 T allele; the GHR exon 3 full-length allele and/or the -202C-IGFBP3 allele) were more likely to achieve an adult height at the lower quartile (odds ratio of 13.3; 95% confidence interval of 3.2-54.2, P = .0001). The SOCS2 polymorphism (rs3782415) has an influence on the adult height of children with TS and GHD after long-term rhGH therapy. Polymorphisms located in GHR, IGFBP3, and SOCS2 loci have an influence on the growth outcomes of TS and GHD patients treated with rhGH. The use of these genetic markers could identify among rhGH-treated patients those who are genetically predisposed to have less favorable outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methods currently employed to establish the etiology of congenital hypothyroidism include thyroid ultrasound and scintigraphic exams. Thyroglobulin is a protein almost exclusively secreted by thyroid tissue and indirectly reflects the amount of follicular cells. Even though thyroglobulin is easy to measure, it has been not frequently used because of discordant results to distinguish mainly athyreosis and ectopy (dysgenesis). Knowing the differences in inheritance and prognosis of thyroid dysgenesis and dyshormonogenesis, it is important to define the etiology of CH, combining tools that are easy, fast and available in most medical centers. Our objective was to evaluate and compare color Doppler ultrasound and serum thyroglobulin with radionuclide scan to define the etiology of congenital hypothyroidism. We evaluated 38 children above 3 years-old off-treatment that performed serum thyroglobulin by immunofluorometric assay, color Doppler ultrasound and radionuclide study. On color Doppler ultrasound, 11 patients had athyreosis, 5 ectopic glands, being I associated to hemiagenesis. Twenty one had topic thyroid (3 goiters, 10 normal, 8 hypoplastic). Hemiagenesis and cystic lesion were not revealed by radionuclide scan. We observed substantial agreement between color Doppler ultrasound and radionuclide scan (kappa=0.745, p<0.0001). Serum thyroglobulin in athyreosis ranged from <1.0 to 18.7 mu g/L. Patients with ectopic glands showed wider thyroglobulin range (4.5 to 123 mu g/L, median 28.4 mu g/L). Only one patient showed thyroglobulin deficiency. By using color Doppler ultrasound and serum thyroglobulin levels as valuable combined tools, we established the etiology of congenital hypothyroidism limiting excessive and harmful exams in children, like radionuclide scan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: The aim of this study was to evaluate the osteogenic potential of recombinant human bone morphogenetic protein-2 (rhBMP-2) and low-level laser irradiation (LLLI), isolated or combined in critical bone defects (5mm) in parietal bone using ovariectomized female rats as an experimental animal model. Materials and Methods: Forty-nine female Wistar rats, bilaterally ovariectomized (OVX), were divided into seven treatment groups of seven animals each: (I) laser in a single application, (II) 7 mu g of pure rhBMP-2, (III) laser and 7 mu g of pure rhBMP-2, (IV) 7 mu g of rhBMP-2/monoolein gel, (V) laser and 7 mu g of rhBMP-2/monoolein gel, (VI) laser and pure monoolein gel, and (VII) critical bone defect controls. The low-level laser source used was a gallium aluminum arsenide semiconductor diode laser device (lambda = 780 nm, D = 120 J/cm(2)). Results: Groups II and III presented higher levels of newly formed bone than all other groups with levels of 40.57% and 40.39%, respectively (p < 0.05). The levels of newly formed bone of groups I, IV, V, and VI were similar with levels of 29.67%, 25.75%, 27.75%, and 30.64%, respectively (p > 0.05). The area of new bone formation in group VII was 20.96%, which is significantly lower than groups I, II, III, and VI. Conclusions: It was concluded that pure rhBMP-2 and a single dose of laser application stimulated new bone formation, but the new bone formation area was significantly increased when only rhBMP-2 was used. Additionally, the laser application in combination with other treatments did not influence the bone formation area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the recombinant thyroid-stimulating hormone (rhTSH) is secreted by stably transfected Chinese hamster ovary (CHO-hTSH) cells, a bioprocess consisting of immobilizing the cells on a substrate allowing their multiplication is very suitable for rhTSH recovering from supernatants at relative high degree of purity. In addition, such a system has also the advantage of easily allowing delicate manipulations of culture medium replacement. In the present study, we show the development of a laboratory scale bioprocess protocol of CHO-hTSH cell cultures on cytodex microcarriers (MCs) in a 1 L bioreactor, for the preparation of rhTSH batches in view of structure/function studies. CHO-hTSH cells were cultivated on a fetal bovine serum supplemented medium during cell growth phase. For rhTSH synthesis phase, 75% of supernatant was replaced by animal protein-free medium every 24 h. Cell cultures were monitored for agitation (rpm), temperature (A degrees C), dissolved oxygen (% DO), pH, cell concentration, MCs coverage, glucose consumption, lactate production, and rhTSH expression. The results indicate that the amount of MCs in the culture and the cell concentration at the beginning of rhTSH synthesis phase were crucial parameters for improving the final rhTSH production. By cultivating the CHO-hTSH cells with an initial cell seeding of four cells/MC on 4 g/L of MCs with a repeated fed batch mode of operation at 40 rpm, 37 A degrees C, 20% DO, and pH 7.2 and starting the rhTSH synthesis phase with 3 x 10(6) cells/mL, we were able to supply the cultures with enough glucose, to maintain low levels of lactate, and to provide high percent (similar to 80%) of fully covered MCs for a long period (5 days) and attain a high cell concentration (similar to 9 x 10(5) cells/mL). The novelty of the present study is represented by the establishment of cell culture conditions allowing us to produce similar to 1.6 mg/L of rhTSH in an already suitable degree of purity. Batches of produced rhTSH were purified and showed biological activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adenine phosphoribosyltransferase (APRT) is an important enzyme component of the purine recycling pathway. Parasitic protozoa of the order Kinetoplastida are unable to synthesize purines de novo and use the salvage pathway for the synthesis of purine bases rendering this biosynthetic pathway an attractive target for antiparasitic drug design. The recombinant human adenine phosphoribosyltransferase (hAPRT) structure was resolved in the presence of AMP in the active site to 1.76 angstrom resolution and with the substrates PRPP and adenine simultaneously bound to the catalytic site to 1.83 angstrom resolution. An additional structure was solved containing one subunit of the dimer in the apo-form to 2.10 angstrom resolution. Comparisons of these three hAPRT structures with other `type I` PRTases revealed several important features of this class of enzymes. Our data indicate that the flexible loop structure adopts an open conformation before and after binding of both substrates adenine and PRPR Comparative analyses presented here provide structural evidence to propose the role of Glu 104 as the residue that abstracts the proton of adenine N9 atom before its nucleophilic attack on the PRPP anomeric carbon. This work leads to new insights to the understanding of the APRT catalytic mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytosolic sulfotransferases are believed to play a role in the neuromodulation of certain neurotransmitters and drugs. To date, four cytosolic sulfotransferases have been shown to be expressed in human brain. Recently, a novel human brain sulfotransferase has been identified and characterized, although its role and localization in the brain are unknown. Here we present the first immunohistochemical (IHC) localization of SULT4A1 in human brain using an affinity-purified polyclonal antibody raised against recombinant human SULT4A1. These results are supported and supplemented by the IHC localization of SULT4A1 in rat brain. In both human and rat brains, strong reactivity was found in several brain regions, including cerebral cortex, cerebellum, pituitary, and brainstem. Specific signal was entirely absent on sections for which preimmune serum from the corresponding animal, processed in the same way as the postimmune serum, was used in the primary screen. The findings from this study may assist in determining the physiological role of this SULT isoform.