972 resultados para Receptor tyrosine kinases


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eph receptor tyrosine kinases and their ligands (ephrins) are key players during the development of the embryonic vasculature; however, their role and regulation in adult angiogenesis remain to be defined. Both receptors and ligands have been shown to be up-regulated in a variety of tumors. To address the hypothesis that hypoxia is an important regulator of Ephs/ephrins expression, we developed a mouse skin flap model of hypoxia. We demonstrate that our model truly represents segmental skin hypoxia by applying four independent methods: continuous measurement of partial cutaneous oxygen tension, monitoring of tissue lactate/pyruvate ratio, time course of hypoxia-inducible factor-1alpha (HIF-1alpha) induction, and localization of stabilized HIF-1alpha by immunofluorescence in the hypoxic skin flap. Our experiments indicate that hypoxia up-regulates not only HIF-1alpha and vascular endothelial growth factor (VEGF) expression, but also Ephs and ephrins of both A and B subclasses in the skin. In addition, we show that in Hep3B and PC-3 cells, the hypoxia-induced up-regulation of Ephs and ephrins is abrogated by small interfering RNA-mediated down-regulation of HIF-1alpha. These novel findings shed light on the role of this versatile receptor/ligand family in adult angiogenesis. Furthermore, our model offers considerable potential for analyzing distinct mechanisms of neovascularization in gene-targeted mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ephrin-B/EphB family proteins are implicated in bidirectional signaling and were initially defined through the function of their ectodomain sequences in activating EphB receptor tyrosine kinases. Ephrin-B1-3 are transmembrane proteins sharing highly conserved C-terminal cytoplasmic sequences. Here we use a soluble EphB1 ectodomain fusion protein (EphB1/Fc) to demonstrate that ephrin-B1 transduces signals that regulate cell attachment and migration. EphB1/Fc induced endothelial ephrin-B1 tyrosine phosphorylation, migration and integrin-mediated (alpha(v)beta(3) and alpha(5)beta(1)) attachment and promoted neovascularization, in vivo, in a mouse corneal micropocket assay. Activation of ephrin-B1 by EphB1/Fc induced phosphorylation of p46 JNK but not ERK-1/2 or p38 MAPkinases. By contrast, mutant ephrin-B1s bearing either a cytoplasmic deletion (ephrin-B1DeltaCy) or a deletion of four C-terminal amino acids (ephrin-B1DeltaPDZbd) fail to activate p46 JNK. Transient expression of intact ephin-B1 conferred EphB1/Fc migration responses on CHO cells, whereas the ephrin-B1DeltaCy and ephrin-B1DeltaPDZbd mutants were inactive. Thus ephrin-B1 transduces 'outside-in' signals through C-terminal protein interactions that affect integrin-mediated attachment and migration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mammalian Ste20 kinase Nck-interacting kinase (NIK) specifically activates the c-Jun amino-terminal kinase (JNK) mitogen-activated protein kinase module. NIK also binds the SH3 domains of the SH2/SH3 adapter protein Nck. To determine whether Nck functions as an adapter to couple NIK to a receptor tyrosine kinase signaling pathway, we determined whether NIK is activated by Eph receptors (EphR). EphRs constitute the largest family of receptor tyrosine kinases (RTK), and members of this family play important roles in patterning of the nervous and vascular systems. In this report, we show that NIK kinase activity is specifically increased in cells stimulated by two EphRs, EphB1 and EphB2. EphB1 kinase activity and phosphorylation of a juxtamembrane tyrosine (Y594), conserved in all Eph receptors, are both critical for NIK activation by EphB1. Although pY594 in the EphB1R has previously been shown to bind the SH2 domain of Nck, we found that stimulation of EphB1 and EphB2 led predominantly to a complex between NIK/Nck, p62(dok), RasGAP, and an unidentified 145-kDa tyrosine-phosphorylated protein. Tyrosine-phosphorylated p62(dok) most probably binds directly to the SH2 domain of Nck and RasGAP and indirectly to NIK bound to the SH3 domain of Nck. We found that NIK activation is also critical for coupling EphB1R to biological responses that include the activation of integrins and JNK by EphB1. Taken together, these findings support a model in which the recruitment of the Ste20 kinase NIK to phosphotyrosine-containing proteins by Nck is an important proximal step in the signaling cascade downstream of EphRs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Developmental assembly of the renal microcirculation is a precise and coordinated process now accessible to experimental scrutiny. Although definition of the cellular and molecular determinants is incomplete, recent findings have reframed concepts and questions about the origins of vascular cells in the glomerulus and the molecules that direct cell recruitment, specialization and morphogenesis. New findings illustrate principles that may be applied to defining critical steps in microvascular repair following glomerular injury. Developmental assembly of endothelial, mesangial and epithelial cells into glomerular capillaries requires that a coordinated, temporally defined series of steps occur in an anatomically ordered sequence. Recent evidence shows that both vasculogenic and angiogenic processes participate. Local signals direct cell migration, proliferation, differentiation, cell-cell recognition, formation of intercellular connections, and morphogenesis. Growth factor receptor tyrosine kinases on vascular cells are important mediators of many of these events. Cultured cell systems have suggested that basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF) promote endothelial cell proliferation, migration or morphogenesis, while genetic deletion experiments have defined an important role for PDGF beta receptors and platelet-derived growth factor (PDGF) B in glomerular development. Receptor tyrosine kinases that convey non-proliferative signals also contribute in kidney and other sites. The EphB1 receptor, one of a diverse class of Eph receptors implicated in neural cell targeting, directs renal endothelial migration, cell-cell recognition and assembly, and is expressed with its ligand in developing glomeruli. Endothelial TIE2 receptors bind angiopoietins (1 and 2), the products of adjacent supportive cells, to signals direct capillary maturation in a sequence that defines cooperative roles for cells of different lineages. Ultimately, definition of the cellular steps and molecular sequence that direct microvascular cell assembly promises to identify therapeutic targets for repair and adaptive remodeling of injured glomeruli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small cell lung cancer (SCLC) accounts for 15% of lung cancer cases and is associated with a dismal prognosis. Standard therapeutic regimens have been improved over the past decades, but without a major impact on patient survival. The development of targeted therapies based on a better understanding of the molecular basis of the disease is urgently needed. At the genetic level, SCLC appears very heterogenous, although somatic mutations targeting classical oncogenes and tumor suppressors have been reported. SCLC also possesses somatic mutations in many other cancer genes, including transcription factors, enzymes involved in chromatin modification, receptor tyrosine kinases and their downstream signaling components. Several avenues have been explored to develop targeted therapies for SCLC. So far, however, there has been limited success with these targeted approaches in clinical trials. Further progress in the optimization of targeted therapies for SCLC will require the development of more personalized approaches for the patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gastrointestinal stromal tumors (GISTs) are oncogene-addicted cancers driven by activating mutations in the genes encoding receptor tyrosine kinases KIT and PDGFR-α. Imatinib mesylate, a specific inhibitor of KIT and PDGFR-α signaling, delays progression of GIST, but is incapable of achieving cure. Thus, most patients who initially respond to imatinib therapy eventually experience tumor progression, and have limited therapeutic options thereafter. To address imatinib-resistance and tumor progression, these studies sought to understand the molecular mechanisms that regulate apoptosis in GIST, and evaluate combination therapies that kill GISTs cells via complementary, but independent, mechanisms. BIM (Bcl-2 interacting mediator of apoptosis), a pro-apoptotic member of the Bcl-2 family, effects apoptosis in oncogene-addicted malignancies treated with targeted therapies, and was recently shown to mediate imatinib-induced apoptosis in GIST. This dissertation examined the molecular mechanism of BIM upregulation and its cytotoxic effect in GIST cells harboring clinically-representative KIT mutations. Additionally, imatinib-induced alterations in BIM and pro-survival Bcl-2 proteins were studied in specimens from patients with GIST, and correlated to apoptosis, FDG-PET response, and survival. Further, the intrinsic pathway of apoptosis was targeted therapeutically in GIST cells with the Bcl-2 inhibitor ABT-737. These studies show that BIM is upregulated in GIST cells and patient tumors after imatinib exposure, and correlates with induction of apoptosis, response by FDG-PET, and disease-free survival. These studies contribute to the mechanistic understanding of imatinib-induced apoptosis in clinically-relevant models of GIST, and may facilitate prediction of resistance and disease progression in patients. Further, combining inhibition of KIT and Bcl-2 induces apoptosis synergistically and overcomes imatinib-resistance in GIST cells. Given that imatinib-resistance and GIST progression may reflect inadequate BIM-mediated inhibition of pro-survival Bcl-2 proteins, the preclinical evidence presented here suggests that direct engagement of apoptosis may be an effective approach to enhance the cytotoxicity of imatinib and overcome resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Men with localized prostate cancer (PCa) have a 100% five-year survival rate, but this rate drops to 33% for men with metastatic disease. A better understanding of the metastatic process is needed to develop better therapies for PCa. Aberrant activation of protein tyrosine kinases, including Src Family Kinases (SFKs) contribute to metastasis through numerous functions, one of which leads to increased expression of cytokines, such as IL-8. However, the relationship between Src activity and IL-8 regulation is not completely understood. In cell line models, I determined that IL-8 activates Src and in turn Src activates IL-8 demonstrating a feed forward loop contributing to the migration and invasion of PCa cells. However, IL-8 is also produced by tumor-associated stromal cells. In bone marrow derived stromal cells (HS5), I demonstrated a feed forward loop occurs as was observed in tumor cells. HS5 conditioned media increased Src activity in PCa cells. By silencing IL-8 in HS5 cells, Src activity was decreased to control levels in PCa cells as was migration and invasion. Thus, stromal cells producing IL-8 contribute to metastatic properties of PCa by a paracrine mechanism. To examine the effect of stromal cells on tumor growth and metastatic potential of PCa in vivo, I mixed HS5 and PCa cells and co-injected them intraprostatically. I determined that tumor growth and metastases were increased. By silencing IL-8 in HS5 cells and co-injecting them with PCa cells intraprostatically, tumor growth and metastases were still increased relative to injection of PCa cells alone, but decreased relative to co-injections with PCa cells and HS5 cells. These studies demonstrated: (1) a feed forward loop in both tumor and stromal cells, whereby IL-8 activates Src, derepressing IL-8 expression in PCa cells in vitro; (2) stromal produced IL-8 activates Src and contributes to the migration and invasion of PCa cells in vitro; and (3) stromal produced IL-8 is responsible, in part, for increases in PCa tumor growth and metastatic potential. Together, these studies demonstrated that IL-8-mediated Src activity increases the metastatic potential of PCa and therapeutic agents interfering with the IL-8/SFK signaling axis may be useful for prevention and treatment of metastases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catenins were first characterized as linking the cytoplasmic domains of cadherin cell-cell adhesion molecules to the cortical actin cytoskeleton. In addition to their essential role in modulating cadherin adhesion, catenins have more recently been indicated to participate in cell and developmental signaling pathways. $\beta$-catenin, for example, associates directly with receptor tyrosine kinases and transcription factors such as LEF-1/TCF, and tranduces developmental signals within the Wnt pathway. $\beta$-catenin also appear to a role in regulating cell proliferation via its interaction with the tumor supressor protein APC. I have employed the yeast two-hybrid method to reveal that fascin, a bundler of actin filaments, binds to $\beta$-catenin's central Armadillo-repeat domain. The $\beta$-catenin-fascin interaction exists in cell lines as well as in animal brain tissues as revealed by immunoprecipitation analysis, and substantiated in vitro with purified proteins. Fascin additionally binds to plakoglobin, which contains a more divergent Armadillo-repeat domain. Fascin and E-cadherin utilize a similar binding-site within $\beta$-catenin, such that they form mutually exclusive complexes with $\beta$-catenin. Fascin and $\beta$-catenin co-localize at cell-cell borders and dynamic cell leading edges of epithelial and endothelial cells. Total immunoprecipitable b-catein has several isoforms, only the hyperphosphorylated isoform 1 associated with fascin. An increased $\beta$-catenin-fascin interaction was observed in HGF stimulated cells, and in Xenopus embryos injected with src kinase RNAs. The increased $\beta$-catenin association with fascin is correlated with increased levels of $\beta$-catenin phosphorylation. $\beta$-catenin, but not fascin, can be readily phosphorylated on tyrosine in vivo following src injection of embryos, or in vitro following v-src addition to purified protein components. These observations suggest a role of $\beta$-catenin phosphorylation in regulating its interaction with fascin, and src kinase may be an important regulator of the $\beta$-catenin-fascin association in vivo. The $\beta$-catenin-fascin interaction represents a novel catenin complex, that may conceivably regulate actin cytoskeletal structures, cell adhesion, and cellular motility, perhaps in a coordinate manner with its functions in cadherin and APC complexes. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shc proteins are implicated in coupling receptor tyrosine kinases to the mitogen-activated protein kinase (MAPK) pathway by recruiting Grb2/SOS to the plasma membrane. To better understand the role of Shc in oncogenesis brought about by point mutation activated neu (p185*), we transfected a Shc mutant (ShcΔCH1), which lacks the Grb2 binding site Y317 by deletion of collagen-homology domain 1, into p185*-transformed NIH3T3 cells. The cellular transformation phenotypes were found to be largely suppressed by expression of ShcΔCH1. This study indicates that Shc plays a critical role in mediating the oncogenical signals of p185*. Although ShcΔCH1 still retained another Grb2 binding site (Y239/240), we did not detect its physical association with Grb2. We also found that ShcΔCH1 could associate with p185*; however, this association did not interfere with the endogenous Shc-p185* interaction or the Shc-Grb2 interaction. In addition, p185*-mediated MAPK/Elk activation, PI3-K activation and Src activation likewise was not inhibited by ShcΔCH1 expression. Taken together, our current study clearly indicates that ShcΔCH1 suppresses the p185*-induced transformation, and that this suppression is mediated through a MAPK-independent and possibly PI3-K, Src-independent pathway. These results suggest that Shc may be involved in other unidentified signal pathways which are critical for p185*-induced cellular transformation besides the three pathways that we have studied. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the identification of Neuregulin-3 (NRG3), a novel protein that is structurally related to the neuregulins (NRG1). The NRG1/neuregulins are a diverse family of proteins that arise by alternative splicing from a single gene. These proteins play an important role in controlling the growth and differentiation of glial, epithelial, and muscle cells. The biological effects of NRG1 are mediated by receptor tyrosine kinases ErbB2, ErbB3, and ErbB4. However, genetic studies have suggested that the activity of ErbB4 may also be regulated in the central nervous system by a ligand distinct from NRG1. NRG3 is predicted to contain an extracellular domain with an epidermal growth factor (EGF) motif, a transmembrane domain, and a large cytoplasmic domain. We show that the EGF-like domain of NRG3 binds to the extracellular domain of ErbB4 in vitro. Moreover, NRG3 binds to ErbB4 expressed on cells and stimulates tyrosine phosphorylation of this receptor. The expression of NRG3 is highly restricted to the developing and adult nervous system. These data suggest that NRG3 is a novel, neural-enriched ligand for ErbB4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuregulins are a multi-isoform family of growth factors that activate members of the erbB family of receptor tyrosine kinases. The membrane-anchored isoforms contain the receptor-activating ligand in their extracellular domain, a single membrane-spanning region, and a long cytoplasmic tail. To evaluate the potential biological role of the intracellular domain of the membrane-anchored neuregulin isoforms, we used a domain-specific gene disruption approach to produce a mouse line in which only the region of the neuregulin gene encoding almost the entire intracellular domain was disrupted. Consistent with previous reports in which all neuregulin isoforms were disrupted, the resulting homozygous neuregulin mutants died at E10.5 of circulatory failure and displayed defects in neural and cardiac development. To further understand these in vivo observations, we evaluated a similarly truncated neuregulin construct after transient expression in COS-7 cells. This cytoplasmic tail-deleted mutant, unlike wild-type neuregulin isoforms, was resistant to proteolytic release of its extracellular-domain ligand, a process required for erbB receptor activation. Thus, proteolytic processing of the membrane-bound neuregulin isoforms involved in cranial ganglia and heart embryogenesis is likely developmentally regulated and is critically controlled by their intracellular domain. This observation indicates that erbB receptor activation by membrane-bound neuregulins most likely involves a unique temporally and spatially regulated “inside-out” signaling process that is critical for processing and release of the extracellular-domain ligand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tyrosine phosphorylation has been shown to be an important modulator of synaptic transmission in both vertebrates and invertebrates. Such findings hint toward the existence of extracellular ligands capable of activating this widely represented signaling mechanism at or close to the synapse. Examples of such ligands are the peptide growth factors which, on binding, activate receptor tyrosine kinases. To gain insight into the physiological consequences of receptor tyrosine kinase activation in squid giant synapse, a series of growth factors was tested in this preparation. Electrophysiological, pharmacological, and biochemical analysis demonstrated that nerve growth factor (NGF) triggers an acute and specific reduction of the postsynaptic potential amplitude, without affecting the presynaptic spike generation or presynaptic calcium current. The NGF target is localized at a postsynaptic site and involves a new TrkA-like receptor. The squid receptor crossreacts with antibodies generated against mammalian TrkA, is tyrosine phosphorylated in response to NGF stimulation, and is blocked by specific pharmacological inhibitors. The modulation described emphasizes the important role of growth factors on invertebrate synaptic transmission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enhanced activity of receptor tyrosine kinases such as the PDGF β-receptor and EGF receptor has been implicated as a contributing factor in the development of malignant and nonmalignant proliferative diseases such as cancer and atherosclerosis. Several epidemiological studies suggest that green tea may prevent the development of cancer and atherosclerosis. One of the major constituents of green tea is the polyphenol epigallocathechin-3 gallate (EGCG). In an attempt to offer a possible explanation for the anti-cancer and anti-atherosclerotic activity of EGCG, we examined the effect of EGCG on the PDGF-BB–, EGF-, angiotensin II-, and FCS-induced activation of the 44 kDa and 42 kDa mitogen-activated protein (MAP) kinase isoforms (p44mapk/p42mapk) in cultured vascular smooth muscle cells (VSMCs) from rat aorta. VSMCs were treated with EGCG (1–100 μM) for 24 h and stimulated with the above mentioned agonists for different time periods. Stimulation of the p44mapk/p42mapk was detected by the enhanced Western blotting method using phospho-specific MAP kinase antibodies that recognized the Tyr204-phosphorylated (active) isoforms. Treatment of VSMCs with 10 and 50 μM EGCG resulted in an 80% and a complete inhibition of the PDGF-BB–induced activation of MAP kinase isoforms, respectively. In striking contrast, EGCG (1–100 μM) did not influence MAP kinase activation by EGF, angiotensin II, and FCS. Similarly, the maximal effect of PDGF-BB on the c-fos and egr-1 mRNA expression as well as on intracellular free Ca2+ concentration was completely inhibited in EGCG-treated VSMCs, whereas the effect of EGF was not affected. Quantification of the immunoprecipitated tyrosine-phosphorylated PDGF-Rβ, phosphatidylinositol 3′-kinase, and phospholipase C-γ1 by the enhanced Western blotting method revealed that EGCG treatment effectively inhibits tyrosine phosphorylation of these kinases in VSMCs. Furthermore, we show that spheroid formation of human glioblastoma cells (A172) and colony formation of sis-transfected NIH 3T3 cells in semisolid agar are completely inhibited by 20–50 μM EGCG. Our findings demonstrate that EGCG is a selective inhibitor of the tyrosine phosphorylation of PDGF-Rβ and its downstream signaling pathway. The present findings may partly explain the anti-cancer and anti-atherosclerotic activity of green tea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuregulin, or neu differentiation factor, induces cell proliferation or differentiation through interaction with members of the ErbB family of receptor tyrosine kinases. We report that neuregulin can also induce profound morphogenic responses in cultured epithelial cells of different origins. These effects include scattering of small epithelial islands and rearrangement of larger cell islands into ordered ring-shaped arrays with internal lumens. The ring-forming cells are interconnected by cadherin- and β-catenin-containing adherens junctions. In confluent cultures, neuregulin treatment induces formation of circular lumenlike gaps in the monolayer. Both cell scattering and ring formation are accompanied by a marked increase in cell motility that is independent of hepatocyte growth factor/scatter factor and its receptor (c-Met). Affinity-labeling experiments implied that a combination of ErbB-2 with ErbB-3 mediates the morphogenic signal of neuregulin in gastric cells. Indeed, a similar morphogenic effect could be reconstituted in nonresponsive cells by coexpression of ErbB-2 and -3. We conclude that a heterodimer between the kinase-defective neuregulin receptor, ErbB-3, and the coreceptor, ErbB-2, mediates the morphogenetic action of neuregulin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuroblastoma (NB) is a common pediatric tumor that exhibits a wide range of biological and clinical heterogeneity. EPH (erythropoietin-producing hepatoma amplified sequence) family receptor tyrosine kinases and ligand ephrins play pivotal roles in neural and cardiovascular development. High-level expression of transcripts encoding EPHB6 receptors (EPHB6) and its ligands ephrin-B2 and ephrin-B3 (EFNB2, EFNB3) is associated with low-stage NB (stages 1, 2, and 4S) and high TrkA expression. In this study, we showed that EFNB2 and TrkA expressions were associated with both tumor stage and age, whereas EPHB6 and EFNB3 expressions were solely associated with tumor stage, suggesting that these genes were expressed in distinct subsets of NB. Kaplan-Meier and Cox regression analyses revealed that high-level expression of EPHB6, EFNB2, and EFNB3 predicted favorable NB outcome (P < 0.005), and their expression combined with TrkA expression predicted the disease outcome more accurately than each variable alone (P < 0.00005). Interestingly, if any one of the four genes (EPHB6, EFNB2, EFNB3, or TrkA) was expressed at high levels in NB, the patient survival was excellent (>90%). To address whether a good disease outcome of NB was a consequence of high-level expression of a “favorable NB gene,” we examined the effect of EPHB6 on NB cell lines. Transfection of EPHB6 cDNA into IMR5 and SY5Y expressing little endogenous EPHB6 resulted in inhibition of their clonogenicity in culture. Furthermore, transfection of EPHB6 suppressed the tumorigenicity of SY5Y in a mouse xenograft model, demonstrating that high-level expressions of favorable NB genes, such as EPHB6, can in fact suppress malignant phenotype of unfavorable NB.