975 resultados para Random telegraph noise (RTN)
Resumo:
Properly designed decision support environments encourage proactive and objective decision making. The work presented in this paper inquires into developing a decision support environment and a tool to facilitate objective decision making in dealing with road traffic noise. The decision support methodology incorporates traffic amelioration strategies both within and outside the road reserve. The project is funded by the CRC for Construction Innovation and conducted jointly by the RMIT University and the Queensland Department of Main Roads (MR) in collaboration with the Queensland Department of Public Works, Arup Pty Ltd., and the Queensland University of Technology. In this paper, the proposed decision support framework is presented in the way of a flowchart which enabled the development of the decision support tool (DST). The underpinning concept is to establish and retain an information warehouse for each critical road segment (noise corridor) for a given planning horizon. It is understood that, in current practice, some components of the approach described are already in place but not fully integrated and supported. It provides an integrated user-friendly interface between traffic noise modeling software, noise management criteria and cost databases.
Resumo:
Community awareness and the perception on the traffic noise related health impacts have increased significantly over the last decade resulting in a large volume of public inquiries flowing to Road Authorities for planning advice. Traffic noise management in the urban environment is therefore becoming a “social obligation”, essentially due to noise related health concerns. Although various aspects of urban noise pollution and mitigation have been researched independently, an integrated approach by stakeholders has not been attempted. Although the current treatment and mitigation strategies are predominantly handled by the Road Agencies, a concerted effort by all stakeholders is becoming mandatory for effective and tangible outcomes in the future. A research project is underway a RMIT University, Australia, led by the second author to consider the use of “hedonic pricing” for alternative noise amelioration treatments within the road reserve and outside the road reserve. The project aims to foster a full range noise abatement strategy encompassing source, path and noise receiver. The benefit of such a study would be to mitigate the problem where it is most effective and would defuse traditional “authority” boundaries to produce the optimum outcome. The project is conducted in collaboration with the Department of Main Roads Queensland, Australia and funded by the CRC for Construction Innovation. As part of this study, a comprehensive literature search is currently underway to investigate the advancements in community health research, related to environmental noise pollution, and the advancements in technical and engineering research in mitigating the issue. This paper presents the outcomes of this work outlining state of the art, national and international good practices and gap analysis to identify major anomalies and developments.
Resumo:
Channel measurements and simulations have been carried out to observe the effects of pedestrian movement on multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) channel capacity. An in-house built MIMO-OFDM packet transmission demonstrator equipped with four transmitters and four receivers has been utilized to perform channel measurements at 5.2 GHz. Variations in the channel capacity dynamic range have been analysed for 1 to 10 pedestrians and different antenna arrays (2 × 2, 3 × 3 and 4 × 4). Results show a predicted 5.5 bits/s/Hz and a measured 1.5 bits/s/Hz increment in the capacity dynamic range with the number of pedestrian and the number of antennas in the transmitter and receiver array.
Resumo:
Objectives. Intrusive memories of extreme trauma can disrupt a stepwise approach to imaginal exposure. Concurrent tasks that load the visuospatial sketchpad (VSSP) of working memory reduce the vividness of recalled images. This study tested whether relief of distress from competing VSSP tasks during imaginal exposure is at the cost of impaired desensitization . Design. This study examined repeated exposure to emotive memories using 18 unselected undergraduates and a within-subjects design with three exposure conditions (Eye Movement, Visual Noise, Exposure Alone) in random, counterbalanced order. Method. At baseline, participants recalled positive and negative experiences, and rated the vividness and emotiveness of each image. A different positive and negative recollection was then used for each condition. Vividness and emotiveness were rated after each of eight exposure trials. At a post-exposure session 1 week later, participants rated each image without any concurrent task. Results. Consistent with previous research, vividness and distress during imaging were lower during Eye Movements than in Exposure Alone, with passive visual interference giving intermediate results. A reduction in emotional responses from Baseline to Post was of similar size for the three conditions. Conclusion. Visuospatial tasks may offer a temporary response aid for imaginal exposure without affecting desensitization.
Resumo:
We propose an efficient and low-complexity scheme for estimating and compensating clipping noise in OFDMA systems. Conventional clipping noise estimation schemes, which need all demodulated data symbols, may become infeasible in OFDMA systems where a specific user may only know his own modulation scheme. The proposed scheme first uses equalized output to identify a limited number of candidate clips, and then exploits the information on known subcarriers to reconstruct clipped signal. Simulation results show that the proposed scheme can significantly improve the system performance.
Resumo:
Random Indexing K-tree is the combination of two algorithms suited for large scale document clustering.
Resumo:
Multicarrier code division multiple access (MC-CDMA) is a very promising candidate for the multiple access scheme in fourth generation wireless communi- cation systems. During asynchronous transmission, multiple access interference (MAI) is a major challenge for MC-CDMA systems and significantly affects their performance. The main objectives of this thesis are to analyze the MAI in asyn- chronous MC-CDMA, and to develop robust techniques to reduce the MAI effect. Focus is first on the statistical analysis of MAI in asynchronous MC-CDMA. A new statistical model of MAI is developed. In the new model, the derivation of MAI can be applied to different distributions of timing offset, and the MAI power is modelled as a Gamma distributed random variable. By applying the new statistical model of MAI, a new computer simulation model is proposed. This model is based on the modelling of a multiuser system as a single user system followed by an additive noise component representing the MAI, which enables the new simulation model to significantly reduce the computation load during computer simulations. MAI reduction using slow frequency hopping (SFH) technique is the topic of the second part of the thesis. Two subsystems are considered. The first sub- system involves subcarrier frequency hopping as a group, which is referred to as GSFH/MC-CDMA. In the second subsystem, the condition of group hopping is dropped, resulting in a more general system, namely individual subcarrier frequency hopping MC-CDMA (ISFH/MC-CDMA). This research found that with the introduction of SFH, both of GSFH/MC-CDMA and ISFH/MC-CDMA sys- tems generate less MAI power than the basic MC-CDMA system during asyn- chronous transmission. Because of this, both SFH systems are shown to outper- form MC-CDMA in terms of BER. This improvement, however, is at the expense of spectral widening. In the third part of this thesis, base station polarization diversity, as another MAI reduction technique, is introduced to asynchronous MC-CDMA. The com- bined system is referred to as Pol/MC-CDMA. In this part a new optimum com- bining technique namely maximal signal-to-MAI ratio combining (MSMAIRC) is proposed to combine the signals in two base station antennas. With the applica- tion of MSMAIRC and in the absents of additive white Gaussian noise (AWGN), the resulting signal-to-MAI ratio (SMAIR) is not only maximized but also in- dependent of cross polarization discrimination (XPD) and antenna angle. In the case when AWGN is present, the performance of MSMAIRC is still affected by the XPD and antenna angle, but to a much lesser degree than the traditional maximal ratio combining (MRC). Furthermore, this research found that the BER performance for Pol/MC-CDMA can be further improved by changing the angle between the two receiving antennas. Hence the optimum antenna angles for both MSMAIRC and MRC are derived and their effects on the BER performance are compared. With the derived optimum antenna angle, the Pol/MC-CDMA system is able to obtain the lowest BER for a given XPD.
Resumo:
This correspondence presents a microphone array shape calibration procedure for diffuse noise environments. The procedure estimates intermicrophone distances by fitting the measured noise coherence with its theoretical model and then estimates the array geometry using classical multidimensional scaling. The technique is validated on noise recordings from two office environments.
Resumo:
In this paper, we consider a time-space fractional diffusion equation of distributed order (TSFDEDO). The TSFDEDO is obtained from the standard advection-dispersion equation by replacing the first-order time derivative by the Caputo fractional derivative of order α∈(0,1], the first-order and second-order space derivatives by the Riesz fractional derivatives of orders β 1∈(0,1) and β 2∈(1,2], respectively. We derive the fundamental solution for the TSFDEDO with an initial condition (TSFDEDO-IC). The fundamental solution can be interpreted as a spatial probability density function evolving in time. We also investigate a discrete random walk model based on an explicit finite difference approximation for the TSFDEDO-IC.
Resumo:
This paper describes the approach taken to the clustering task at INEX 2009 by a group at the Queensland University of Technology. The Random Indexing (RI) K-tree has been used with a representation that is based on the semantic markup available in the INEX 2009 Wikipedia collection. The RI K-tree is a scalable approach to clustering large document collections. This approach has produced quality clustering when evaluated using two different methodologies.
Resumo:
Robust image hashing seeks to transform a given input image into a shorter hashed version using a key-dependent non-invertible transform. These image hashes can be used for watermarking, image integrity authentication or image indexing for fast retrieval. This paper introduces a new method of generating image hashes based on extracting Higher Order Spectral features from the Radon projection of an input image. The feature extraction process is non-invertible, non-linear and different hashes can be produced from the same image through the use of random permutations of the input. We show that the transform is robust to typical image transformations such as JPEG compression, noise, scaling, rotation, smoothing and cropping. We evaluate our system using a verification-style framework based on calculating false match, false non-match likelihoods using the publicly available Uncompressed Colour Image database (UCID) of 1320 images. We also compare our results to Swaminathan’s Fourier-Mellin based hashing method with at least 1% EER improvement under noise, scaling and sharpening.
Resumo:
In cloud computing resource allocation and scheduling of multiple composite web services is an important challenge. This is especially so in a hybrid cloud where there may be some free resources available from private clouds but some fee-paying resources from public clouds. Meeting this challenge involves two classical computational problems. One is assigning resources to each of the tasks in the composite web service. The other is scheduling the allocated resources when each resource may be used by more than one task and may be needed at different points of time. In addition, we must consider Quality-of-Service issues, such as execution time and running costs. Existing approaches to resource allocation and scheduling in public clouds and grid computing are not applicable to this new problem. This paper presents a random-key genetic algorithm that solves new resource allocation and scheduling problem. Experimental results demonstrate the effectiveness and scalability of the algorithm.
Resumo:
Traditional speech enhancement methods optimise signal-level criteria such as signal-to-noise ratio, but these approaches are sub-optimal for noise-robust speech recognition. Likelihood-maximising (LIMA) frameworks are an alternative that optimise parameters of enhancement algorithms based on state sequences generated for utterances with known transcriptions. Previous reports of LIMA frameworks have shown significant promise for improving speech recognition accuracies under additive background noise for a range of speech enhancement techniques. In this paper we discuss the drawbacks of the LIMA approach when multiple layers of acoustic mismatch are present – namely background noise and speaker accent. Experimentation using LIMA-based Mel-filterbank noise subtraction on American and Australian English in-car speech databases supports this discussion, demonstrating that inferior speech recognition performance occurs when a second layer of mismatch is seen during evaluation.
Resumo:
World economies increasingly demand reliable and economical power supply and distribution. To achieve this aim the majority of power systems are becoming interconnected, with several power utilities supplying the one large network. One problem that occurs in a large interconnected power system is the regular occurrence of system disturbances which can result in the creation of intra-area oscillating modes. These modes can be regarded as the transient responses of the power system to excitation, which are generally characterised as decaying sinusoids. For a power system operating ideally these transient responses would ideally would have a “ring-down” time of 10-15 seconds. Sometimes equipment failures disturb the ideal operation of power systems and oscillating modes with ring-down times greater than 15 seconds arise. The larger settling times associated with such “poorly damped” modes cause substantial power flows between generation nodes, resulting in significant physical stresses on the power distribution system. If these modes are not just poorly damped but “negatively damped”, catastrophic failures of the system can occur. To ensure system stability and security of large power systems, the potentially dangerous oscillating modes generated from disturbances (such as equipment failure) must be quickly identified. The power utility must then apply appropriate damping control strategies. In power system monitoring there exist two facets of critical interest. The first is the estimation of modal parameters for a power system in normal, stable, operation. The second is the rapid detection of any substantial changes to this normal, stable operation (because of equipment breakdown for example). Most work to date has concentrated on the first of these two facets, i.e. on modal parameter estimation. Numerous modal parameter estimation techniques have been proposed and implemented, but all have limitations [1-13]. One of the key limitations of all existing parameter estimation methods is the fact that they require very long data records to provide accurate parameter estimates. This is a particularly significant problem after a sudden detrimental change in damping. One simply cannot afford to wait long enough to collect the large amounts of data required for existing parameter estimators. Motivated by this gap in the current body of knowledge and practice, the research reported in this thesis focuses heavily on rapid detection of changes (i.e. on the second facet mentioned above). This thesis reports on a number of new algorithms which can rapidly flag whether or not there has been a detrimental change to a stable operating system. It will be seen that the new algorithms enable sudden modal changes to be detected within quite short time frames (typically about 1 minute), using data from power systems in normal operation. The new methods reported in this thesis are summarised below. The Energy Based Detector (EBD): The rationale for this method is that the modal disturbance energy is greater for lightly damped modes than it is for heavily damped modes (because the latter decay more rapidly). Sudden changes in modal energy, then, imply sudden changes in modal damping. Because the method relies on data from power systems in normal operation, the modal disturbances are random. Accordingly, the disturbance energy is modelled as a random process (with the parameters of the model being determined from the power system under consideration). A threshold is then set based on the statistical model. The energy method is very simple to implement and is computationally efficient. It is, however, only able to determine whether or not a sudden modal deterioration has occurred; it cannot identify which mode has deteriorated. For this reason the method is particularly well suited to smaller interconnected power systems that involve only a single mode. Optimal Individual Mode Detector (OIMD): As discussed in the previous paragraph, the energy detector can only determine whether or not a change has occurred; it cannot flag which mode is responsible for the deterioration. The OIMD seeks to address this shortcoming. It uses optimal detection theory to test for sudden changes in individual modes. In practice, one can have an OIMD operating for all modes within a system, so that changes in any of the modes can be detected. Like the energy detector, the OIMD is based on a statistical model and a subsequently derived threshold test. The Kalman Innovation Detector (KID): This detector is an alternative to the OIMD. Unlike the OIMD, however, it does not explicitly monitor individual modes. Rather it relies on a key property of a Kalman filter, namely that the Kalman innovation (the difference between the estimated and observed outputs) is white as long as the Kalman filter model is valid. A Kalman filter model is set to represent a particular power system. If some event in the power system (such as equipment failure) causes a sudden change to the power system, the Kalman model will no longer be valid and the innovation will no longer be white. Furthermore, if there is a detrimental system change, the innovation spectrum will display strong peaks in the spectrum at frequency locations associated with changes. Hence the innovation spectrum can be monitored to both set-off an “alarm” when a change occurs and to identify which modal frequency has given rise to the change. The threshold for alarming is based on the simple Chi-Squared PDF for a normalised white noise spectrum [14, 15]. While the method can identify the mode which has deteriorated, it does not necessarily indicate whether there has been a frequency or damping change. The PPM discussed next can monitor frequency changes and so can provide some discrimination in this regard. The Polynomial Phase Method (PPM): In [16] the cubic phase (CP) function was introduced as a tool for revealing frequency related spectral changes. This thesis extends the cubic phase function to a generalised class of polynomial phase functions which can reveal frequency related spectral changes in power systems. A statistical analysis of the technique is performed. When applied to power system analysis, the PPM can provide knowledge of sudden shifts in frequency through both the new frequency estimate and the polynomial phase coefficient information. This knowledge can be then cross-referenced with other detection methods to provide improved detection benchmarks.