859 resultados para Radiofrequency signals
Resumo:
We analyze the spectral zero-crossing rate (SZCR) properties of transient signals and show that SZCR contains accurate localization information about the transient. For a train of pulses containing transient events, the SZCR computed on a sliding window basis is useful in locating the impulse locations accurately. We present the properties of SZCR on standard stylized signal models and then show how it may be used to estimate the epochs in speech signals. We also present comparisons with some state-of-the-art techniques that are based on the group-delay function. Experiments on real speech show that the proposed SZCR technique is better than other group-delay-based epoch detectors. In the presence of noise, a comparison with the zero-frequency filtering technique (ZFF) and Dynamic programming projected Phase-Slope Algorithm (DYPSA) showed that performance of the SZCR technique is better than DYPSA and inferior to that of ZFF. For highpass-filtered speech, where ZFF performance suffers drastically, the identification rates of SZCR are better than those of DYPSA.
Resumo:
Distributed compressed sensing exploits information redundancy, inbuilt in multi-signal ensembles with interas well as intra-signal correlations, to reconstruct undersampled signals. In this paper we revisit this problem, albeit from a different perspective, of taking streaming data, from several correlated sources, as input to a real time system which, without any a priori information, incrementally learns and admits each source into the system.
Resumo:
We address the problem of sampling and reconstruction of two-dimensional (2-D) finite-rate-of-innovation (FRI) signals. We propose a three-channel sampling method for efficiently solving the problem. We consider the sampling of a stream of 2-D Dirac impulses and a sum of 2-D unit-step functions. We propose a 2-D causal exponential function as the sampling kernel. By causality in 2-D, we mean that the function has its support restricted to the first quadrant. The advantage of using a multichannel sampling method with causal exponential sampling kernel is that standard annihilating filter or root-finding algorithms are not required. Further, the proposed method has inexpensive hardware implementation and is numerically stable as the number of Dirac impulses increases.
Enhancing fluorescence signals from aluminium thin films and foils using polyelectrolyte multilayers
Resumo:
In this paper we investigate the application of polyelectrolyte multilayer (PEM) coated metal slides in enhancing fluorescence signal. We observed around eight-fold enhancement in fluorescence for protein incubated on PEM coated on aluminium mirror surface with respect to that of functionalized bare glass slides. The fluorescence intensities were also compared with commercially available FAST (R) slides (Whatman) offering 3D immobilization of proteins and the results were found to be comparable. We also showed that PEM coated on low-cost and commonly available aluminium foils also results in comparable fluorescence enhancement as sputtered aluminium mirrors. Immunoassay was also performed, using model proteins, on aluminium mirror as well as on aluminium foil based devices to confirm the activity of proteins. This work demonstrated the potential of PEMs in the large-scale, roll-to-roll manufacturing of fluorescence enhancements substrates for developing disposable, low-cost devices for fluorescence based diagnostic methods.
Resumo:
Neutral and niche theories give contrasting explanations for the maintenance of tropical tree species diversity. Both have some empirical support, but methods to disentangle their effects have not yet been developed. We applied a statistical measure of spatial structure to data from 14 large tropical forest plots to test a prediction of niche theory that is incompatible with neutral theory: that species in heterogeneous environments should separate out in space according to their niche preferences. We chose plots across a range of topographic heterogeneity, and tested whether pairwise spatial associations among species were more variable in more heterogeneous sites. We found strong support for this prediction, based on a strong positive relationship between variance in the spatial structure of species pairs and topographic heterogeneity across sites. We interpret this pattern as evidence of pervasive niche differentiation, which increases in importance with increasing environmental heterogeneity.
Resumo:
Stimulated optical signals obtained by subjecting the system to a narrow band and a broadband pulse show both gain and loss Raman features at the red and blue side of the narrow beam, respectively. Recently observed temperature-dependent asymmetry in these features Mallick et al., J. Raman Spectrosc. 42, 1883 (2011); Dang et al., Phys. Rev. Lett. 107, 043001 (2011)] has been attributed to the Stokes and anti-Stokes components of the third-order susceptibility, chi((3)). By treating the setup as a steady state of an open system coupled to four quantum radiation field modes, we show that Stokes and anti-Stokes processes contribute to both the loss and gain resonances. chi((3)) predicts loss and gain signals with equal intensity for electronically off-resonant excitation. Some asymmetry may exist for resonant excitation. However, this is unrelated to the Stokes vs anti-Stokes processes. Any observed temperature-dependent asymmetry must thus originate from effects lying outside the chi((3)) regime.
Resumo:
Various ecological and other complex dynamical systems may exhibit abrupt regime shifts or critical transitions, wherein they reorganize from one stable state to another over relatively short time scales. Because of potential losses to ecosystem services, forecasting such unexpected shifts would be valuable. Using mathematical models of regime shifts, ecologists have proposed various early warning signals of imminent shifts. However, their generality and applicability to real ecosystems remain unclear because these mathematical models are considered too simplistic. Here, we investigate the robustness of recently proposed early warning signals of regime shifts in two well-studied ecological models, but with the inclusion of time-delayed processes. We find that the average variance may either increase or decrease prior to a regime shift and, thus, may not be a robust leading indicator in time-delayed ecological systems. In contrast, changing average skewness, increasing autocorrelation at short time lags, and reddening power spectra of time series of the ecological state variable all show trends consistent with those of models with no time delays. Our results provide insights into the robustness of early warning signals of regime shifts in a broader class of ecological systems.
Resumo:
Major emphasis, in compressed sensing (CS) research, has been on the acquisition of sub-Nyquist number of samples of a signal that has a sparse representation on some tight frame or an orthogonal basis, and subsequent reconstruction of the original signal using a plethora of recovery algorithms. In this paper, we present compressed sensing data acquisition from a different perspective, wherein a set of signals are reconstructed at a sampling rate which is a multiple of the sampling rate of the ADCs that are used to measure the signals. We illustrate how this can facilitate usage of anti-aliasing filters with relaxed frequency specifications and, consequently, of lower order.
Resumo:
We address the problem of temporal envelope modeling for transient audio signals. We propose the Gamma distribution function (GDF) as a suitable candidate for modeling the envelope keeping in view some of its interesting properties such as asymmetry, causality, near-optimal time-bandwidth product, controllability of rise and decay, etc. The problem of finding the parameters of the GDF becomes a nonlinear regression problem. We overcome the hurdle by using a logarithmic envelope fit, which reduces the problem to one of linear regression. The logarithmic transformation also has the feature of dynamic range compression. Since temporal envelopes of audio signals are not uniformly distributed, in order to compute the amplitude, we investigate the importance of various loss functions for regression. Based on synthesized data experiments, wherein we have a ground truth, and real-world signals, we observe that the least-squares technique gives reasonably accurate amplitude estimates compared with other loss functions.
Resumo:
In this paper optical code-division multiple-access (O-CDMA) packet network is considered, which offers inherent security in the access networks. The application of O-CDMA to multimedia transmission (voice, data, and video) is investigated. The simultaneous transmission of various services is achieved by assigning to each user unique multiple code signatures. Thus, by applying a parallel mapping technique, we achieve multi-rate services. A random access protocol is proposed, here, where all distinct codes are used, for packet transmission. The codes, Optical Orthogonal Code (OOC), or 1D codes and Wavelength/Time Single-Pulse-per-Row (W/T SPR), or 2D codes, are analyzed. These 1D and 2D codes with varied weight are used to differentiate the Quality of Service (QoS). The theoretical bit error probability corresponding to the quality of each service is established using 1D and 2D codes in the receiver noiseless case and compared. The results show that, using 2D codes QoS in multimedia transmission is better than using 1D codes.
Resumo:
In this paper we propose a linear time-varying model for diphthong synthesis based on linear interpolation of formant frequencies. We, thence, determine the timbre just-noticeable difference (JND) for diphthong /a I/ (as in ‘buy’) with a constant pitch excitation through perception experiment involving four listeners and explore the phonetic JND of the diphthong. Their JND responses are determined using 1-up-3-down procedure. Using the experimental data, we map the timbre JND and phonetic JND onto a 2-D region of percentage change of formant glides. The timbre and phonetic JND contours for constant pitch show that the phonetic JND region encloses timbre JND region and also varies across listeners. The JND is observed to be more sensitive to ending vowel /I/ than starting vowel /a/ in some listeners and dependent on the direction of perturbation of starting and ending vowels.
Resumo:
The authors consider the channel estimation problem in the context of a linear equaliser designed for a frequency selective channel, which relies on the minimum bit-error-ratio (MBER) optimisation framework. Previous literature has shown that the MBER-based signal detection may outperform its minimum-mean-square-error (MMSE) counterpart in the bit-error-ratio performance sense. In this study, they develop a framework for channel estimation by first discretising the parameter space and then posing it as a detection problem. Explicitly, the MBER cost function (CF) is derived and its performance studied, when transmitting binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) signals. It is demonstrated that the MBER based CF aided scheme is capable of outperforming existing MMSE, least square-based solutions.
Resumo:
Real world biological systems such as the human brain are inherently nonlinear and difficult to model. However, most of the previous studies have either employed linear models or parametric nonlinear models for investigating brain function. In this paper, a novel application of a nonlinear measure of phase synchronization based on recurrences, correlation between probabilities of recurrence (CPR), to study connectivity in the brain has been proposed. Being non-parametric, this method makes very few assumptions, making it suitable for investigating brain function in a data-driven way. CPR's utility with application to multichannel electroencephalographic (EEG) signals has been demonstrated. Brain connectivity obtained using thresholded CPR matrix of multichannel EEG signals showed clear differences in the number and pattern of connections in brain connectivity between (a) epileptic seizure and pre-seizure and (b) eyes open and eyes closed states. Corresponding brain headmaps provide meaningful insights about synchronization in the brain in those states. K-means clustering of connectivity parameters of CPR and linear correlation obtained from global epileptic seizure and pre-seizure showed significantly larger cluster centroid distances for CPR as opposed to linear correlation, thereby demonstrating the superior ability of CPR for discriminating seizure from pre-seizure. The headmap in the case of focal epilepsy clearly enables us to identify the focus of the epilepsy which provides certain diagnostic value. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
A number of ecosystems can exhibit abrupt shifts between alternative stable states. Because of their important ecological and economic consequences, recent research has focused on devising early warning signals for anticipating such abrupt ecological transitions. In particular, theoretical studies show that changes in spatial characteristics of the system could provide early warnings of approaching transitions. However, the empirical validation of these indicators lag behind their theoretical developments. Here, we summarize a range of currently available spatial early warning signals, suggest potential null models to interpret their trends, and apply them to three simulated spatial data sets of systems undergoing an abrupt transition. In addition to providing a step-by-step methodology for applying these signals to spatial data sets, we propose a statistical toolbox that may be used to help detect approaching transitions in a wide range of spatial data. We hope that our methodology together with the computer codes will stimulate the application and testing of spatial early warning signals on real spatial data.
Resumo:
Using a diagrammatic superoperator formalism we calculate optical signals at molecular junctions where a single molecule is coupled to two metal leads which are held at different chemical potentials. The molecule starts in a nonequilibrium steady state whereby it continuously exchanges electrons with the leads with a constant electron flux. Expressions for frequency domain optical signals measured in response to continuous laser fields are derived by expanding the molecular correlation functions in terms of its many-body states. The nonunitary evolution of molecular states is described by the quantum master equation. (C) 2014 AIP Publishing LLC.