846 resultados para Radio-frequency power
Resumo:
The frequency dependent radio frequency power degradation in direct modulated microwave photonic systems employing uniform period fiber Bragg gratings (FBG) as reflective elements in investigated. Results show implications in terms of the available radio frequency bandwidth and the stability requirements for the FBG.
Resumo:
We propose a new approach for secret key exchange involving the variation of the cavity length of an ultra-long fibre laser. The scheme is based on the realisation that the free spectral range of the laser cavity can be used as an information carrier. We present a proof-of-principle demonstration of this new concept using a 50-km-long fibre laser to link two users, both of whom can randomly add an extra 1-km-long fibre segment.
Resumo:
Radio frequency identification (RFID) technology has gained increasing popularity in businesses to improve operational efficiency and maximise costs saving. However, there is a gap in the literature exploring the enhanced use of RFID to substantially add values to the supply chain operations, especially beyond what the RFID vendors could offer. This paper presents a multi-agent system, incorporating RFID technology, aimed at fulfilling the gap. The system is developed to model supply chain activities (in particular, logistics operations) and is comprised of autonomous and intelligent agents representing the key entities in the supply chain. With the advanced characteristics of RFID incorporated, the agent system examines ways logistics operations (i.e. distribution network) particular) can be efficiently reconfigured and optimised in response to dynamic changes in the market, production and at any stage in the supply chain. © 2012 IEEE.
Resumo:
This chapter presents Radio Frequency Identification (RFID), which is one of the Automatic Identification and Data Capture (AIDC) technologies (Wamba and Boeck, 2008) and discusses the application of RFID in E-Commerce. Firstly RFID is defined and the tag and reader components of the RFID system are explained. Then historical context of RFID is briefly discussed. Next, RFID is contrasted with other AIDC technologies, especially the use of barcodes which are commonly applied in E-Commerce. Lastly, RFID applications in E-Commerce are discussed with the focus on achievable benefits and obstacles to successful applications of RFID in E-Commerce, and ways to alleviate them.
Resumo:
Radio Frequency Identification Technology (RFID) adoption in healthcare settings has the potential to reduce errors, improve patient safety, streamline operational processes and enable the sharing of information throughout supply chains. RFID adoption in the English NHS is limited to isolated pilot studies. Firstly, this study investigates the drivers and inhibitors to RFID adoption in the English NHS from the perspective of the GS1 Healthcare User Group (HUG) tasked with coordinating adoption across private and public sectors. Secondly a conceptual model has been developed and deployed, combining two of foresight’s most popular methods; scenario planning and technology roadmapping. The model addresses the weaknesses of each foresight technique as well as capitalizing on their individual, inherent strengths. Semi structured interviews, scenario planning workshops and a technology roadmapping exercise were conducted with the members of the HUG over an 18-month period. An action research mode of enquiry was utilized with a thematic analysis approach for the identification and discussion of the drivers and inhibitors of RFID adoption. The results of the conceptual model are analysed in comparison to other similar models. There are implications for managers responsible for RFID adoption in both the NHS and its commercial partners, and for foresight practitioners. Managers can leverage the insights gained from identifying the drivers and inhibitors to RFID adoption by making efforts to influence the removal of inhibitors and supporting the continuation of the drivers. The academic contribution of this aspect of the thesis is in the field of RFID adoption in healthcare settings. Drivers and inhibitors to RFID adoption in the English NHS are compared to those found in other settings. The implication for technology foresight practitioners is a proof of concept of a model combining scenario planning and technology roadmapping using a novel process. The academic contribution to the field of technology foresight is the conceptual development of foresight model that combines two popular techniques and then a deployment of the conceptual foresight model in a healthcare setting exploring the future of RFID technology.
Resumo:
The objective of this research was to find Young's elastic modulus for thin gold films at room and cryogenic temperatures based on the flexional model which has not been previously attempted. Electrical Sonnet simulations and numerical methods using Abacus for the mechanical responses were employed for this purpose. A RF MEM shunt switch was designed and a fabrication process developed in house. The switch is composed of a superconducting YBa2 Cu3O7 coplanar waveguide structure with an Au bridge membrane suspended above an area of the center conductor covered with BaTiO3 dielectric. The Au membrane is actuated by the electrostatic attractive force acting between the transmission line and the membrane when voltage is applied. The value of the actuation force will greatly depend on the switch pull-down voltage and on the geometry and mechanical properties of the bridge material. Results show that the elastic modulus for Au thin film can be 484 times higher at cryogenic temperature than it is at room temperature. ^
Resumo:
Over the last 10 years, the development and the understanding of the mechanical properties of thin film material have been essential for improving the reliability and lifetime in operation of microelectromechanical systems (MEMS). Although the properties of a bulk material might be well characterized, thin-film properties are considerably different from those of the bulk and it cannot be assumed that mechanical properties measured using bulk specimens will apply to the same materials when used as a thin film in MEMS. For many microelectronic thin films, the material properties depend strongly on the details of the deposition process and the growth conditions on its substrate. ^ The purpose of this dissertation is to determine the temperature dependence of a gold thin film membrane on the pull down voltage of a MEMS switch as the temperature is varied from room temperature (300 K) to cryogenic temperature (10 K). For this purpose, an RF MEMS shunt switch was designed and fabricated. The switch is composed of a gold coplanar waveguide structure with a gold bridge membrane suspended above an area of the center conductor which is covered by a dielectric (BaTiO3). The gold membrane is actuated by an electrostatic force acting between the transmission line and the membrane when voltage is applied. ^ Material characterization of the gold evaporated thin film membrane was obtained via AFM, SEM, TEM and X-ray diffraction analyses. A mathematical relation was used to estimate the pull down voltage of the switch at cryogenic temperature and results showed that the mathematical theory match the experimental values of the tested MEMS switches. ^
Resumo:
The objective of this research was to find Young's elastic modulus for thin gold films at room and cryogenic temperatures based on the flexional model which has not been previously attempted. Electrical Sonnet simulations and numerical methods using Abacus for the mechanical responses were employed for this purpose. A RF MEM shunt switch was designed and a fabrication process developed in house. The switch is composed of a superconducting YBa2Cu3O7 coplanar waveguide structure with an Au bridge membrane suspended above an area of the center conductor covered with BaTiO3 dielectric. The Au membrane is actuated by the electrostatic attractive force acting between the transmission line and the membrane when voltage is applied. The value of the actuation force will greatly depend on the switch pull-down voltage and on the geometry and mechanical properties of the bridge material. Results show that the elastic modulus for Au thin film can be 484 times higher at cryogenic temperature than it is at room temperature.
Resumo:
Purpose: This paper extends the use of Radio Frequency Identification (RFID) data for accounting of warehouse costs and services. Time Driven Activity Based Costing (TDABC) methodology is enhanced with the real-time collected RFID data about duration of warehouse activities. This allows warehouse managers to have accurate and instant calculations of costs. The RFID enhanced TDABC (RFID-TDABC) is proposed as a novel application of the RFID technology. Research Approach: Application of RFID-TDABC in a warehouse is implemented on warehouse processes of a case study company. Implementation covers receiving, put-away, order picking, and despatching. Findings and Originality: RFID technology is commonly used for the identification and tracking items. The use of the RFID generated information with the TDABC can be successfully extended to the area of costing. This RFID-TDABC costing model will benefit warehouse managers with accurate and instant calculations of costs. Research Impact: There are still unexplored benefits to RFID technology in its applications in warehousing and the wider supply chain. A multi-disciplinary research approach led to combining RFID technology and TDABC accounting method in order to propose RFID-TDABC. Combining methods and theories from different fields with RFID, may lead researchers to develop new techniques such as RFID-TDABC presented in this paper. Practical Impact: RFID-TDABC concept will be of value to practitioners by showing how warehouse costs can be accurately measured by using this approach. Providing better understanding of incurred costs may result in a further optimisation of warehousing operations, lowering costs of activities, and thus provide competitive pricing to customers. RFID-TDABC can be applied in a wider supply chain.
Resumo:
A new method for radio-frequency interference (RFI) contamination identification over open oceans for the two C-subbands and X-band of Advanced Microwave Scanning Radiometer 2 (AMSR2) channel measurements is suggested. The method is based both on the AMSR2 brightness temperature (T-B) modeling and on the analysis of AMSR2 measurements over oceans. The joint analysis of T-B spectral differences allowed to identify the relations between them and the limits of their variability, which are ensured by the changes in the environmental conditions. It was found that the constraints, based on the ratio of spectral differences, are more regionally and seasonally independent than the spectral differences themselves. Although not all possible RFI combinations are considered, the developed simple criteria can be used to detect most RFI-contaminated pixels over the World Ocean for AMSR2 measurements in two C-subbands and the X-band.
Resumo:
Recent advancements in the area of nanotechnology have brought us into a new age of pervasive computing devices. These computing devices grow ever smaller and are being used in ways which were unimaginable before. Recent interest in developing a precise indoor positioning system, as opposed to existing outdoor systems, has given way to much research heading into the area. The use of these small computing devices offers many conveniences for usage in indoor positioning systems. This thesis will deal with using small computing devices Raspberry Pi’s to enable and improve position estimation of mobile devices within closed spaces. The newly patented Orthogonal Perfect DFT Golay coding sequences will be used inside this scenario, and their positioning properties will be tested. After that, testing and comparisons with other coding sequences will be done.
Resumo:
Atmospheric-pressure plasma processing techniques emerge as efficient and convenient tools to engineer a variety of nanomaterials for advanced applications in nanoscience and nanotechnology. This work presents different methods, including using a quasi-sinusoidal high-voltage generator, a radio-frequency power supply, and a uni-polar pulse generator, to generate atmospheric-pressure plasmas in the jet or dielectric barrier discharge configurations. The applicability of the atmospheric-pressure plasma is exemplified by the surface modification of nanoparticles for polymeric nanocomposites. Dielectric measurements reveal that representative nanocomposites with plasma modified nanoparticles exhibit notably higher dielectric breakdown strength and a significantly extended lifetime.
Resumo:
We report on the application of cold atmospheric-pressure plasmas to modify silica nanoparticles to enhance their compatibility with polymer matrices. Thermally nonequilibrium atmospheric-pressure plasma is generated by a high-voltage radio frequency power source operated in the capacitively coupled mode with helium as the working gas. Compared to the pure polymer and the polymer nanocomposites with untreated SiO2, the plasma-treated SiO2–polymer nanocomposites show higher dielectric breakdown strength and extended endurance under a constant electrical stress. These improvements are attributed to the stronger interactions between the SiO2 nanoparticles and the surrounding polymer matrix after the plasma treatment. Our method is generic and can be used in the production of high-performance organic–inorganic functional nanocomposites.
Resumo:
NMR spectroscopy is a powerful means of studying liquid-crystalline systems at atomic resolutions. Of the many parameters that can provide information on the dynamics and order of the systems, H-1-C-13 dipolar couplings are an important means of obtaining such information. Depending on the details of the molecular structure and the magnitude of the order parameters, the dipolar couplings can vary over a wide range of values. Thus the method employed to estimate the dipolar couplings should be capable of estimating both large and small dipolar couplings at the same time. For this purpose, we consider here a two-dimensional NMR experiment that works similar to the insensitive nuclei enhanced by polarization transfer (INEPT) experiment in solution. With the incorporation of a modification proposed earlier for experiments with low radio frequency power, the scheme is observed to enable a wide range of dipolar couplings to be estimated at the same time. We utilized this approach to obtain dipolar couplings in a liquid crystal with phenyl rings attached to either end of the molecule, and estimated its local order parameters.
Resumo:
This work discusses the design of a transformer used in a plant plasma. This plant, which is being developed in UFRN, will be used in the treatment of waste. It consists basically of a radio frequency power supply and a inductive plasma torch. The transformer operates at the nominal frequency of 400 kHz, with 50 kW, allowing the adaptation of impedance between the power supply and torch. To develop the project, a study was done on the fabrication technologies and physical effects on the frequency of operation. This was followed by the modeling of this transformer. Finally, simulations and tests were conducted to validate the design