998 resultados para Radiation injury
Resumo:
Introduction. Chronic allograft vasculopathy is an important cause of graft loss. Considering the inflammatory response in the development of chronic vascular lesions, therapeutic approaches to target the inflammatory process may be useful. We sought to investigate the possible protective effects on balloon catheter-induced vascular injury of thalidomide and tamoxifen, 2 drugs with powerful anti-inflammatory, immunomodulatory, and antifibrotic effects, using an animal model that mimics the morphologic features of chronic allograft vasculopathy. Methods. Male Wistar rats subjected to balloon catheter carotid injury (INJ) were treated with thalidomide (100 mg/kg), or tamoxifen (10 mg/kg), or vehicle. Contralateral right carotid arteries were used as uninjured controls. Morphometric and immunohistochemical analyses were performed at 14 days postinjury. Results. Injured carotid arteries showed marked neointimal hyperplasia, which was significantly inhibited among animals treated with thalidomide or tamoxifen: neointimal/media ratios of 1.4 +/- 0.4 versus 0.2 +/- 0.1 versus 0.4 +/- 0.2, for INJ, INJ + Thalid, and INJ + Tamox; respectively (P < .001). The endothelial cell loss was significantly less pronounced among animals subjected to carotid balloon injury that were treated with thalidomide (24 +/- 14 vs 1 +/- 1 cells per section in INJ, respectively (P < .05). Therapy with either thalidomide or tamoxifen effectively maintained alpha-smooth muscle actin expression in the media, similar to uninjured arteries. In this setting, tamoxifen was additionally effective to prevent the migration of myofibroblasts in to the intima. Conclusion. Thalidomide and tamoxifen were effective to reduce neointimal hyperplasia secondary to vascular damage. The vasculoprotective effects of thalidomide were more pronounced to preserve endothelial cells, whereas tamoxifen inhibited smooth muscle cell migration and proliferation. A possible beneficial effect of combined therapy with thalidomide plus tamoxifen should be addressed in future studies.
Resumo:
IRI is closely related to sepsis in ITx setting. Complete understanding of the mechanisms involved in IRI development may improve outcomes. Ortothopic ITx without immunosuppression was performed in order to characterize IRI-associated mucosal damage. Twenty pigs underwent ITx. Two groups were assigned to different CI times: G1: 90 min and, G2: 180 min. Euro-Collins was used as preservation solution. Jejunal fragments were collected at donor laparotomy, 30 min, and 3 days after reperfusion. IRI assessment involved: histopathologic analysis, quantification of MPO-positive cells through immunohistochemical studies, quantification of epithelial apoptotic cells using TUNEL staining, and quantification of IL-6, ET-1, Bak, and Bcl-XL genes expression by RT-PCR. Neutrophilic infiltration increased in a similar fashion in both groups, but lasted longer in G2. Apoptosis detected by TUNEL staining increased and anti-apoptotic gene Bcl-XL expression decreased significantly in G1, 3 days after surgery. Endothelin-1 and IL-6 genes expression increased 30 min after the procedure and returned to baseline 3 days after surgery. In conclusion, IL-6 and ET-1 are involved precociously in the development of intestinal IRI. Apoptosis was more frequently detected in G1 grafts by TUNEL-staining and by RT-PCR.
Resumo:
Background: Brain injury is responsible for significant morbidity and mortality in trauma patients, but controversy still exists over optimal fluid management for these patients. This study aimed to investigate the effects of acute hemodilution with hydroxyethyl starch (HES) or lactated Ringer`s solution (LR) in intracranial pressure (ICP) and cerebral perfusion pressure (CPP) in dogs submitted to a cryogenic brain injury model. Methods: Design-Prospective laboratory animal study. Setting-Research laboratory in a teaching hospital. Subjects-Thirty-five male mongrel dogs. Interventions-Animals were enrolled to five groups: control, hemodilution with LR or HES 6% to an hematocrit target of 27% or 35%. Results: ICP and CPP levels were measured after cryogenic brain injury. Hemodilution promotes an increment of ICP levels, which decreases CPP when hematocrit target was estimated in 27.% after hemodilution. However, no differences were observed regarding crystalloid or colloid solution used for hemodilution in ICP and CPP levels. Conclusions: Hemodilution to a low hematocrit level increases ICP and decreases CPP scores in dogs submitted to a cryogenic brain injury. These results suggest that excessive hemodilution to a hematocrit below 30% should be avoided in traumatic brain injury patients.
Resumo:
OBJECTIVES The glycosaminoglycan (GAG) layer is referred to as a bladder protective factor. We reproduced an experimental model of urothelial damage to assess GAG metabolism in the process of injury and recovery of the urothelium. METHODS Wistar female rats were bladder catheterized and instilled with either protamine sulfate (PS groups) or sterile saline (control groups). At different days after the procedure, 24-hour urine samples were obtained. The urinary levels of hyaluronic acid (HA) and sulfated glycosaminoglycan were determined in all groups and in nonmanipulated rats (day 0). Additionally, sulfated-GAG synthesis was assessed by the incorporation of [S-35]-inorganic sulfate. The bladders were analyzed by histochemical staining for HA and immunofluorescence for heparin sulfate and syndecan-4. RESULTS Urinary HA and sulfated-GAG were elevated after PS injection (P <0.05). A greater concentration of [S-35] -labeled GAG in the PS group animals on the fifth day and, especially, on the seventh day represented increased GAG synthesis at these periods (P <0.05). Bladder sections from the PS group animals on day 1 showed a greater amount of HA in the urothelium. PS instillation damaged the urothelium layer of heparin sulfate and syndecan-4 seen in the control animals. On day 5, patchy areas of a restored layer were seen, and, on day 7, this layer had completely regenerated. CONCLUSIONS Urinary GAG cannot differentiate urothelial damage from recovery. Elevated levels of urinary GAG can result from either desquamation of the surface cell GAG layer or increased GAG synthesis to regenerate the damaged urothelium.
Resumo:
Purpose: The bladder is normally impermeable to possible hostile environmental factors and toxic urinary wastes. Any disruption of the permeability barrier would permit the leakage of urine constituents into the underlying cells layers and subsequent inflammation. Protamine sulfate, which increases urothelial permeability, is used in experimental models of cystitis. We examined whether protamine sulfate alone could cause bladder inflammation or if the association of protamine sulfate and urine is needed for this condition. Materials and Methods: Female Wistar rats (Center for the Development of Experimental Models for Medicine and Biology, Federal University of Sao Paulo, Sao Paulo, Brazil) had the bladder catheterized and instilled with protamine sulfate (10 mg) or sterile saline for 30 minutes. To exclude urine other groups of rats underwent bilateral nephrectomy and the same procedure was used. One day after instillation the bladders were removed for histopathology. Edema and vascular congestion were graded from 0-none to 3-severe. Polymorphonuclear and mast cells were counted. The Kruskal-Wallis test was performed for statistical analysis. Results: Intravesical instillation of protamine sulfate in nonnephrectomized rats led to inflammation, in contrast to findings in rats instilled with saline. On the other hand, nephrectomized rats showed no inflammatory changes following the instillation of protamine sulfate or saline. The mast cell count was similar in all groups. Conclusions: Bladder inflammation in this experimental model of urothelial injury was not due to protamine sulfate alone. The association of protamine sulfate and urine was necessary to trigger the inflammatory cascade. Thus, urine indeed has an important role in the development of bladder inflammation in an environment of higher urothelial permeability.
Resumo:
Objectives: Acute pancreatitis (AP) protease release induces lung parenchymal destruction via matrix metalloproteinases (MMPs), a neutrophil (polymorphonuclear leukocyte)-dependent process. Recent studies in hemorrhagic shock revealed that hypertonic saline (HTS) has an anti-inflammatory effect and can inhibit a variety of neutrophil functions. The aim of this study was to determine whether HTS and its actions in the pathway of neutrophil migration, MMPs, and heat shock proteins (HSPs) are effective in protecting the lung from injury associated with AP. Methods: We determined neutrophil infiltration and expressions of MMPs and HSPs in the lung tissue after AP induced by retrograde infusion of 2.5% of sodium taurocholate. Results: Animals submitted to AP that received HTS compared with those who received normal saline presented with increased HSP70 and HSP90 expressions and reduced myeloperoxidase levels and MMP-9 expression and activity. Conclusions: Our data raised the hypothesis that a sequence of HTS lung protection events increases HSP70 and HSP90, inhibiting infiltration of neutrophils and their protease actions in the lung.
Resumo:
Peritoneal dialysis (PD) is a simple, safe, gentle, and efficient renal replacement therapy (RRT) method. It is able to correct acute kidney injury (AKI)-induced metabolic, electrolytic, and acid-base disorders and volume overload both in and out the intensive care unit setting. Some PD modalities, such as high-volume PD and continuous flow PD, can provide RRT doses and efficiency comparable to extracorporeal blood purification methods. PD is particularly suitable for children, patients with refractory heart failure or hemodynamically instable, conditions where systemic anticoagulation should be avoided, patients with difficulty for vascular access and hypo- and hyperthermia conditions. In the following manuscript, PD technical aspects and the possible advantages and limitations of this RRT method will be discussed, and the more recent literature on clinical experience with PD for treatment of AKI will be reviewed.
Resumo:
Inflammation is currently recognized as a key mechanism in the pathogenesis of renal ischemia-reperfusion (I/R) injury. The importance of infiltrating neutrophil, lymphocytes, and macrophage in this kind of injury has been assessed with conflicting results. Annexin 1 is a protein with potent neutrophil anti-migratory activity. In order to evaluate the effects of annexin A1 on renal I/R injury, uninephrectomized rats received annexin A1 mimetic peptide Ac2-26 (100 mu g) or vehicle before 30 min of renal artery clamping and were compared to sham surgery animals. Annexin A1 mimetic peptide granted a remarkable protection against I/R injury, preventing glomerular filtration rate and urinary osmolality decreases and acute tubular necrosis development. Annexin A1 infusion aborted neutrophil extravasation and attenuated macrophage infiltration but did not prevent tissue lymphocyte traffic. I/R increased annexin A1 expression (assessed by transmission electron microscopy) in renal epithelial cells, which was attenuated by exogenous annexin A1 infusion. Additionally, annexin A1 reduced I/R injury in isolated proximal tubules suspension. Annexin A1 protein afforded striking functional and structural protection against renal I/R. These results point to an important role of annexin A1 in the epithelial cells defense against I/R injury and indicate that neutrophils are key mediators for the development of tissue injury after renal I/R. If these results were confirmed in clinical studies, annexin A1 might emerge as an important tool to protect against I/R injury in renal transplantation and in vascular surgery.
Resumo:
Collapsing glomerulopathy is a rare form of glomerular injury, characterized by segmental or global collapse of the glomerular capillaries, wrinkling and retraction of the glomerular basement membrane, and marked hypertrophy and hyperplasia of podocytes. Prognosis is usually poor, with most cases developing end-stage renal disease, in spite of treatment. The association of collapsing glomerulopathy and systemic lupus erythematosus is very unusual. In this report, we describe the first case of a simultaneous diagnosis of collapsing glomerulopathy and diffuse proliferative lupus nephritis. The case presented with acute kidney injury and nephrotic syndrome and evolved with partial remission of nephrotic syndrome and recovery of renal function after aggressive treatment with intravenous cyclophosphamide and methylprednisolone. Lupus (2011) 20, 98-101.
Resumo:
The sensitivity of several short tests of speed of information processing to the effects of mild head injury in rugby league football was investigated. The measures used were the Symbol Digit Modalities Test, the Digit Symbol Substitution Test, and the Speed of Comprehension Test. Two studies were conducted, the first to examine the effect of practice, the second to determine sensitivity to cognitive impairment immediately following injury. The first study established alternate form equivalence and demonstrated that performance on the Speed of Comprehension and Digit Symbol Substitution tests improved with practice, whereas the Symbol Digit Modalities test remained stable. A second study of 10 players who subsequently sustained mild head injuries showed that measures of speed of information processing were sensitive to impairment in the postacute phase, whereas an untimed task of word recognition (Spot-the-Word) was not. Speed of Comprehension was more sensitive to postinjury impairment than either the Digit Symbol Substitution or Symbol Digit Modalities tests. A repeated baseline assessment before injury using the higher score to reflect a player's potential, allowed measurement of impaired performance on sensitive tests.
Resumo:
Objective: To document outcome and to investigate patterns of physical and psychosocial recovery in the first year following severe traumatic brain injury (TBI) in an Australian patient sample. Design: A longitudinal prospective study of a cohort of patients, with data collection at 3, 6, 9, and 12 months post injury. Setting: A head injury rehabilitation unit in a large metropolitan public hospital. Patients: A sample of 55 patients selected from 120 consecutive admissions with severe TBI. Patients who were more than 3 months post injury on admission, who remained confused, or who had severe communication deficits or a previous neurologic disorder were excluded. Interventions: All subjects participated in a multidisciplinary inpatient rehabilitation program, followed by varied participation in outpatient rehabilitation and community-based sen ices. Main Outcome Measures: The Sickness impact Profile (SIP) provided physical, psychosocial, and total dysfunction scores at each follow-up. Outcome at 1 year was measured by the Disability Rating Scale. Results: Multivariate analysis of variance indicated that the linear trend of recovery over time was less for psychosocial dysfunction than for physical dysfunction (F(1,51) = 5.87, P < .02). One rear post injury, 22% of subjects had returned to their previous level of employability, and 42% were able to live independently. Conclusions: Recovery from TBI in this Australian sample followed a pattern similar to that observed in other countries, with psychosocial dysfunction being more persistent. Self-report measures such as the SIP in TBI research are limited by problems of diminished self-awareness.
Resumo:
Radiation dose calculations in nuclear medicine depend on quantification of activity via planar and/or tomographic imaging methods. However, both methods have inherent limitations, and the accuracy of activity estimates varies with object size, background levels, and other variables. The goal of this study was to evaluate the limitations of quantitative imaging with planar and single photon emission computed tomography (SPECT) approaches, with a focus on activity quantification for use in calculating absorbed dose estimates for normal organs and tumors. To do this we studied a series of phantoms of varying complexity of geometry, with three radionuclides whose decay schemes varied from simple to complex. Four aqueous concentrations of (99m)Tc, (131)I, and (111)In (74, 185, 370, and 740 kBq mL(-1)) were placed in spheres of four different sizes in a water-filled phantom, with three different levels of activity in the surrounding water. Planar and SPECT images of the phantoms were obtained on a modern SPECT/computed tomography (CT) system. These radionuclides and concentration/background studies were repeated using a cardiac phantom and a modified torso phantom with liver and ""tumor"" regions containing the radionuclide concentrations and with the same varying background levels. Planar quantification was performed using the geometric mean approach, with attenuation correction (AC), and with and without scatter corrections (SC and NSC). SPECT images were reconstructed using attenuation maps (AM) for AC; scatter windows were used to perform SC during image reconstruction. For spherical sources with corrected data, good accuracy was observed (generally within +/- 10% of known values) for the largest sphere (11.5 mL) and for both planar and SPECT methods with (99m)Tc and (131)I, but were poorest and deviated from known values for smaller objects, most notably for (111)In. SPECT quantification was affected by the partial volume effect in smaller objects and generally showed larger errors than the planar results in these cases for all radionuclides. For the cardiac phantom, results were the most accurate of all of the experiments for all radionuclides. Background subtraction was an important factor influencing these results. The contribution of scattered photons was important in quantification with (131)I; if scatter was not accounted for, activity tended to be overestimated using planar quantification methods. For the torso phantom experiments, results show a clear underestimation of activity when compared to previous experiment with spherical sources for all radionuclides. Despite some variations that were observed as the level of background increased, the SPECT results were more consistent across different activity concentrations. Planar or SPECT quantification on state-of-the-art gamma cameras with appropriate quantitative processing can provide accuracies of better than 10% for large objects and modest target-to-background concentrations; however when smaller objects are used, in the presence of higher background, and for nuclides with more complex decay schemes, SPECT quantification methods generally produce better results. Health Phys. 99(5):688-701; 2010
Resumo:
Gamma and beta radiation emitting radiopharmaceuticals are handled in nuclear medicine services, and in many cases there is only individual monitoring of gamma radiation. In this paper, the results obtained using a wrist dosimeter prototype (CaSO(4):Dy + Teflon pellets) show that the doses for workers occupationally exposed to beta radiation from (153)Sm are not negligible. It is important that this dose is evaluated, and it has to be taken into consideration in the individual monitoring system.