951 resultados para Radiation injuries.
Resumo:
Examined the barriers faced by people with Spinal Cord Injuries (SCI) when integrating their Assistive Technology (AT) into the workplace, as well as factors that contribute to successful integration. In-depth interviews were taken with 5 men (aged 37-50 yrs) with SCI, 3 of their employers and 2 co-workers. Results indicate that in addition to the barriers previously outlined in the literature related to funding the technology, time delays, information availability, training and maintenance, other issues were highlighted. Implications for service providers are considered in relation to these barriers and the factors that prompted successful integration. The author discusses limitations of the study and makes recommendations for future research. (PsycINFO Database Record (c) 2007 APA, all rights reserved)
Resumo:
We investigated the effects of gamma-radiation on cells isolated from the longitudinal smooth muscle layer of the guinea pig ileum, a relatively radioresistant tissue. Single doses (up to 50 Gy) reduced the amount of sarcoplasmatic reticulum and condensed the myofibrils, as shown by electron microscopy 3 days post-irradiation. After that, contractility of smooth muscle strips was reduced. Ca(2+) handling was altered after irradiation, as shown in fura-2 loaded cells, with elevated basal intracellular Ca(2+), reduced amount of intrareticular Ca(2+), and reduced capacitive Ca(2+) entry. Radiation also induced apoptosis, judged from flow cytometry of cells loaded with proprium iodide. Electron microscopy showed that radiation caused condensation of chromatin in dense masses around the nuclear envelope, the presence of apoptotic bodies, fragmentation of the nucleus, detachment of cells from their neighbors, and reductions in cell volume. Radiation also caused activation of caspase 12. Apoptosis was reduced by the administration of the caspase inhibitor Z-Val-Ala-Asp-fluoromethyl-ketone methyl ester (Z-VAD-FIVIK) during the 3 day period after irradiation, and by the chelator of intracellular Ca(2+), 1,2-bis(o-aminophenoxy)ethane-N,N,N`,N`-tetraacetic acid (BAPTA), from 1 h before until 2 h after irradiation. BAPTA also reduced the effects of radiation on contractility, basal intracellular Ca(2+), amount of intrareticular Ca(2+), capacitative Ca(2+) entry, and apoptosis. In conclusion, the effects of gamma radiation on contractility, Ca(2+) handling, and apoptosis appear due to a toxic action of intracellular Ca(2+). Ca(2+)-induced damage to the sarcoplasmatic reticulum seems a key event in impaired Ca(2+) handling and apoptosis induced by gamma-radiation. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Primary teeth were analyzed by micro-SRXRF. The aim of this study was to determine the elemental distribution of lead and calcium in different regions of primary incisor of children living in a notoriously contaminated area (Santo Amaro da Purificacao, Bahia State, Brazil). The measurements were performed in standard geometry of 45 incidence, exciting with a white beam and using a conventional system collimation (orthogonal slits) in the XRF beamline at the Synchrotron Light National Laboratory (Campinas, Brazil). (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Differential scanning calorimetric (DSC) and thermogravimetric analysis (TGA) have been used to study the thermal decomposition, the melting behavior and low-temperature transitions of copolymers obtained by radiation-induced grafting of styrene onto poly (tetrafluoroethylene- perfluoropropylvinylether) (PFA) substrates. PFA with different contents of perfluoropropylvinylether (PPVE) as a comonomer have been investigated. A two step degradation pattern was observed from TGA thermograms of all the grafted copolymers, which was attributed to degradation of PSTY followed by the degradation of the PFA backbone at higher temperature. One broad melting peak can be identified for all copolymers, which has two components in the samples with higher PPVE content. The melting peak, crystal-crystal transition and the degree of crystallinity of the grafted copolymers increases with radiation grafting up to 50 kGy, followed by a decrease at higher doses. No such decrease was observed in the ungrafted PFA samples after irradiation. This indicated that the changes in the heats of transitions and crystallinity at low doses are due to the radiation effects on the microstructure of PFA (chain scission), whereas at higher doses the grafted PSTY is the driving force behind these changes. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A comparative study of the high energy radiation resistance to formation of radicals in two pairs of polymers is reported. In one pair of polymers the phenyl groups containing the imide rings are separated by an ether linkage and in the other pair they are separated by an hexafluoroisopropylidine group. Two of the polymers contained aromatic amine units linked through an ether linkage and the other two polymers contained a trifluoromethyl biphenyl diamine. The polymers were shown to retain a high level of transparency in the visible region following radiolysis to doses as high as 8 Gy. ESR studies of the resistance to radical formation on radiolysis. at 77 K revealed that the polymers containing ether linkages were more stable than their fluorinated analogues, but all were less stable than Kapton (R). (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Recently, Barrett's esophagus and early adenocarcinomas have been detected increasingly frequently in routine follow-up of patients with gastroesophageal reflux. Although surgery is the treatment of choice, some patients are medically unfit for esophagectomy and, in this case, the only alternative curative therapy is radical chemoradiation therapy. In addition, some patients who present with symptoms have small tumors that cannot be localized accurately using routine imaging techniques. This report describes a series of eight patients with small esophageal cancers in whom the tumors were successfully localized following endoscopic injection of contrast, and treated with chemoradiation therapy. The treatment was successful in seven patients. This method of tumor localization demonstrated that conventional techniques are mostly, unreliable when applied to very early cancers.
Resumo:
Case study of a medico-legal report on a plaintiff's spinal injuries showing how the report complied with various prerequisites which ensured that the report presented was fair and accurate.
Resumo:
Epidermal growth factor (EGF) has been reported to either sensitize or protect cells against ionizing radiation. We report here that EGF increases radiosensitivity in both human fibroblasts and lymphoblasts and down-regulates both ATM (mutated in ataxia-telangiectasia (A-T)) and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). No further radiosensitization was observed in A-T cells after pretreatment with EGF. The down-regulation of ATM occurs at the transcriptional level. Concomitant with the down-regulation of ATM, the DNA binding activity of the transcription factor Sp1 decreased. A causal relationship was established between these observations by demonstrating that up-regulation of Sp1 DNA binding activity by granulocyte/macrophage colony-stimulating factor rapidly reversed the EGF-induced decrease in ATM protein and restored radiosensitivity to normal levels. Failure to radiosensitize EGF-treated cells to the same extent as observed for A-T cells can be explained by induction of ATM protein and kinase activity with time post-irradiation. Although ionizing radiation damage to DNA rapidly activates ATM kinase and cell cycle checkpoints, we have provided evidence for the first time that alteration in the amount of ATM protein occurs in response to both EGF and radiation exposure. Taken together these data support complex control of ATM function that has important repercussions for targeting ATM to improve radiotherapeutic benefit.
Resumo:
Epidermal growth factor (EGF) has been reported to either sensitize or protect cells against ionizing radiation. We report here that EGF increases radiosensitivity in both human fibroblasts and lymphoblasts and downregulates both ATM (mutated in ataxia-telangiectasia (A-T)) and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). No further radiosensitization was observed in A-T cells after pretreatment with EGF. The down-regulation of ATM occurs at the transcriptional level. Concomitant with the down-regulation of ATM, the DNA binding activity of the transcription factor Spl decreased. A causal relationship was established between these:observations by demonstrating that upregulation of Spl DNA binding activity by granulocyte/ macrophage colony-stimulating factor rapidly reversed the EGF-induced decrease in ATM protein and restored radiosensitivity to normal levels. Failure to radiosensitize EGF-treated cells to the same extent as observed for A-T cells ban be explained by induction of ATM protein and kinase activity with time post-irradiation, Although ionizing radiation damage to DNA rapidly activates ATM kinase and cell cycle checkpoints, we have provided evidence for the first time that alteration in the amount of ATM protein occurs in response to both EGF and radiation exposure. Taken together these data support complex control of ATM function that has important repercussions for targeting ATM to improve radiotherapeutic benefit.
Resumo:
Purpose: The aims of this randomized controlled trial were to determine whether there were differences in the disease-free survival (DFS) and toxicity between conventional radiotherapy (CRT) and a continuous 3 week accelerated radiotherapy regimen (ART) in stage III and IV squamous cell carcinoma of the oral cavity, oropharynx, larynx and hypopharynx. Patients and methods: Patients from 14 centres throughout Australia and New Zealand were randomly assigned to either CRT, using a single 2 Gy/day to a dose of 70 Gy in 35 fractions in 49 days or to ART, using 1.8 Gy twice a day to a dose of 59.4 Gy in 33 fractions in 24 days. Treatment allocation was stratified for site and stage. The accrual began in 1991 and the trial was closed in 1998 when the target of 350 patients was reached. Results: The median potential follow-up time was 53 months (range, 14-101). The DFS at 5 years was 41% (95% CI, 33-50%) for ART and 35% (95% CI, 27-43%) for CRT (P = 0.323) and the hazard ratio was 0.87 in favour of ART (95% CI, 0.66-1.15). The 5-year disease-specific survival rates were 40% for CRT and 46% for ART (P = 0.398) and the loco-regional control was 47% for CRT vs. 52% for ART (P = 0.300). The respective hazard ratios were 0.88 (95% CI, 0.65-1.2) and 0.85 (0.62-1.16), favouring the accelerated arm. In the ART arm, confluent mucositis was more severe (94 vs. 71%; P < 0.001) and peaked about 3 weeks earlier than in the CRT arm, but healing appeared complete in all cases. There were statistically significant reductions in the probability of grade 2 or greater late soft tissue effects over time in the ART arm (P < 0.05), except for the mucous membrane where late effects were similar in both arms. Conclusions: Differences in DFS, disease-specific survival and loco-regional control have not been demonstrated. ART resulted in more acute mucosal toxicity, but this did not result in greater prolongation of the treatment time compared with the CRT arm. There were less late effects in the ART arm, with the exception of late mucosal effects. This trial has confirmed that tumour cell repopulation occurs during conventionally fractionated radiotherapy for head and neck cancer. However, it has also provided additional evidence that overall improvements in the therapeutic ratio using accelerated fractionation strategies are seriously constrained by the need to limit total doses to levels that do not exceed acute mucosal tolerance. The accelerated schedule tested has been shown in this trial to be an acceptable alternative to conventionally fractionated irradiation to 70 Gy. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.