920 resultados para RESIDENCE TIME DISTRIBUTION
Resumo:
This study presents a computational fluid dynamic (CFD) study of Dimethyl Ether steam reforming (DME-SR) in a large scale Circulating Fluidized Bed (CFB) reactor. The CFD model is based on Eulerian-Eulerian dispersed flow and solved using commercial software (ANSYS FLUENT). The DME-SR reactions scheme and kinetics in the presence of a bifunctional catalyst of CuO/ZnO/Al2O3+ZSM-5 were incorporated in the model using in-house developed user-defined function. The model was validated by comparing the predictions with experimental data from the literature. The results revealed for the first time detailed CFB reactor hydrodynamics, gas residence time, temperature distribution and product gas composition at a selected operating condition of 300 °C and steam to DME mass ratio of 3 (molar ratio of 7.62). The spatial variation in the gas species concentrations suggests the existence of three distinct reaction zones but limited temperature variations. The DME conversion and hydrogen yield were found to be 87% and 59% respectively, resulting in a product gas consisting of 72 mol% hydrogen. In part II of this study, the model presented here will be used to optimize the reactor design and study the effect of operating conditions on the reactor performance and products.
Resumo:
A Eulerian-Eulerian CFD model was used to investigate the fast pyrolysis of biomass in a downer reactor equipped with a novel gas-solid separation mechanism. The highly endothermic pyrolysis reaction was assumed to be entirely driven by an inert solid heat carrier (sand). A one-step global pyrolysis reaction, along with the equations describing the biomass drying and heat transfer, was implemented in the hydrodynamic model presented in part I of this study (Fuel Processing Technology, V126, 366-382). The predictions of the gas-solid separation efficiency, temperature distribution, residence time and the pyrolysis product yield are presented and discussed. For the operating conditions considered, the devolatilisation efficiency was found to be above 60% and the yield composition in mass fraction was 56.85% bio-oil, 37.87% bio-char and 5.28% non-condensable gas (NCG). This has been found to agree reasonably well with recent relevant published experimental data. The novel gas-solid separation mechanism allowed achieving greater than 99.9% separation efficiency and < 2 s pyrolysis gas residence time. The model has been found to be robust and fast in terms of computational time, thus has the great potential to aid in future design and optimisation of the biomass fast pyrolysis process.
Resumo:
The spatial distribution and seasonal dynamics of the crustacean zooplankton were studied in the Danube River and in its side arms near Budapest, Hungary. Microcrustaceans were sampled biweekly from October 2006 to November 2007 at eleven sites. Thermocyclops crassus, Moina micrura and Bosmina longirostris added up to 57.6% of the total density. Comparisons of the different water bodies stressed the separation of the eupotamal and parapotamal side arms. Densities in the side arms were one respectively two orders of magnitude higher as compared to the main channel, which was relatively poor in plankton. There were remarkable longitudinal and transversal variations in the abundance of the major zooplankton groups (cladocerans, adult copepods, copepodites, nauplii) and dominant species (t-test, P < 0.05). However, no general pattern was observed, the spatial distribution depended on the examined objects. There were statistically significant seasonal differences in zooplankton abundance (Tukey-test, P < 0.05). Water residence time and water discharge were not found to be related to zooplankton abundance, but water temperature was positively correlated with microcrustacean density.
Resumo:
The first full water column hafnium isotopic compositions of Atlantic seawater have been obtained at seven locations from the Labrador Sea to the Drake Passage. Despite subpicomolar concentrations in seawater, a precision of the Hf isotopic measurements of <0.7 epsilon-Hf units was achieved. An overall epsilon-Hf range between -3.1 in the Labrador Sea and +4.4 in Antarctic bottom water was determined, the distribution of which broadly reflects continental weathering inputs. Within particular water column profiles, significant differences of up to 4 epsilon-Hf units occur. Combined with Nd isotope data of the same samples, it is evident that the Hf isotopic composition of seawater is too radiogenic for a given Nd isotopic composition and that the largest difference between expected and measured Hf isotopic compositions in seawater occurs near the oldest continental crust in the Labrador Sea. This corroborates the previous proposition, which was mainly based on ferromanganese crust data, that the Hf isotopic composition of seawater is controlled by incongruent weathering of continental crust and possibly, to some extent, by hydrothermal contributions. Hafnium concentrations in the ocean do not increase along the deep ocean conveyer indicating an oceanic residence time of only a few hundred years, which is significantly shorter than previously assumed. The Hf isotopic composition of past seawater can therefore serve as a proxy for short distance, basin scale mixing processes and the regime and intensity of nearby continental weathering processes.
Resumo:
When searching for food, animals often make decisions of where to go, how long to stay in a foraging area and whether or not to return to the last visited spot. These decisions can be enhanced by cognitive traits and adjusted based on previous experience. In social insects such as ants, foraging efficiency have an impact on both individual and colony level. The present study investigated, in the laboratory, the effect of distance from food, capture success and food size, and reward rate on decisions of where to forage in Dinoponera quadriceps, a ponerine ant that forage solitarily and individually make their foraging decisions. We also investigated the influence of learning on the performance of workers over successive trips searching for food by measuring the patch residence time in each foraging trip. Four scenarios were created differing in food reward rates, food size offered and distances colony-food site. Our work has shown that as a rule-of-thumb, workers of D. quadriceps return to the place where a prey item was found on the previous trip, regardless of distance, food size and reward rate. When ants did not capture preys, they were more likely to change path to search for food. However, in one of the scenarios, this decision to switch paths when unsuccessful was less evident, possibly due to the greater variation of possible outcomes ants could experience in this scenario and cognitive constraints of D. quadriceps to predict variations of food distribution. Our results also indicated a learning process of routes of exploration as well as the food site conditions for exploration. After repeated trips, foragers reduced the patch residence time in areas that they did not capture food and quickly changed of foraging area, increasing their foraging efficiency.
Resumo:
This work presents a new ceramic material obtained through the incorporation of solid waste from the steel industry and known as dedusting powder PAE - in ceramic formulations based on clay, potassium and sodium feldspars, kaolin and talc. Formulations were prepared with ceramic residue levels of 0% (basic mass - MB), 2%, 4% and 8%, subjected to firing at temperatures of 1000 ° C, 1050ºC, 1100ºC and 1150ºC for periods of 15 min. and 120 min. The physicchemical and mechanical properties of these ceramic formulations were determined based on the firing temperature, residence time in the oven and the percentage of waste. Since the physicochemical and mechanical properties of the sintered materials were evaluated by chemical analysis techniques (fluorescence X-rays - FRX), particle size distribution, specific surface area, apparent density, structural analysis by diffraction of X-rays (DRX) and characterization of surface by scanning electron microscopy (SEM). The magnetic response characteristics and the pattern of magnetic ferrites of the samples were analyzed in the assay conditions, having noticed that the saturation magnetic susceptibility depend on the sintering temperature of the material and it is associated with its crystal structure. From the analysis results, it was concluded that the ceramic material with better physical and mechanical properties is obtained when the 8% from PAE residue is added to standard formulation under the burn time of 15 minutes and temperature of 1150ºC.
Resumo:
Carbon isotopic measurements on the benthic foraminiferal genus Cibicidoides document that mean deep ocean delta13C values were 0.46 per mil lower during the last glacial maximum than during the Late Holocene. The geographic distribution of delta13C was altered by changes in the production rate of nutrient-depleted deep water in the North Atlantic. During the Late Holocene, North Atlantic Deep Water, with high delta13C values and low nutrient values, can be found throughout the Atlantic Ocean, and its effects can be traced into the southern ocean where it mixes with recirculated Pacific deep water. During the glaciation, decreased production of North Atlantic Deep Water allowed southern ocean deep water to penetrate farther into the North Atlantic and across low-latitude fracture zones into the eastern Atlantic. Mean southern ocean delta13C values during the glaciation are lower than both North Atlantic and Pacific delta13C values, suggesting that production of nutrient-depleted water occurred in both oceans during the glaciation. Enriched 13C values in shallow cores within the Atlantic Ocean indicate the existence of a nutrient-depleted water mass above 2000 m in this ocean.
Resumo:
The evolution through time of trace element contents (Sr, Mg, Mn, and Fe) of sediments at Sites 549 and 550 is similar to that of previously studied oceanic sites. A comparison with some North Atlantic sites and with outcrops of the Gubbio section (Italy) allowed us to show that 1. A negative correlation between Sr and Mg contents, generally characteristic of pelagic carbonate having undergone diagenesis, is confirmed. 2. Magnesium diagenesis occurs over a relatively short time and is sensitive to the sedimentation rate of each individual time period, whereas Sr diagenesis is a long-term phenomenon and is sensitive to the overall average sedimentation rate at the site. Strontium loss by sediments is related to sediment age (i.e., residence time of sediments in a given diagenetic environment) and could be a rough method of dating individual sediment layers. 3. The nature of the seafloor (oceanic or continental) does not appear to play an important part in the content of Fe and Mn in sediments. Their distribution depends more on mid-oceanic ridge activity, paleodepth (through mediation of CaCO3 dissolution and environment), and distance of the site from the ridge.
Resumo:
International audience
Resumo:
Crystallization is employed in different industrial processes. The method and operation can differ depending on the nature of the substances involved. The aim of this study is to examine the effect of various operating conditions on the crystal properties in a chemical engineering design window with a focus on ultrasound assisted cooling crystallization. Batch to batch variations, minimal manufacturing steps and faster production times are factors which continuous crystallization seeks to resolve. Continuous processes scale-up is considered straightforward compared to batch processes owing to increase of processing time in the specific reactor. In cooling crystallization process, ultrasound can be used to control the crystal properties. Different model compounds were used to define the suitable process parameters for the modular crystallizer using equal operating conditions in each module. A final temperature of 20oC was employed in all experiments while the operating conditions differed. The studied process parameters and configuration of the crystallizer were manipulated to achieve a continuous operation without crystal clogging along the crystallization path. The results from the continuous experiment were compared with the batch crystallization results and analysed using the Malvern Morphologi G3 instrument to determine the crystal morphology and CSD. The modular crystallizer was operated successfully with three different residence times. At optimal process conditions, a longer residence time gives smaller crystals and narrower CSD. Based on the findings, at a constant initial solution concentration, the residence time had clear influence on crystal properties. The equal supersaturation criterion in each module offered better results compared to other cooling profiles. The combination of continuous crystallization and ultrasound has large potential to overcome clogging, obtain reproducible and narrow CSD, specific crystal morphologies and uniform particle sizes, and exclusion of milling stages in comparison to batch processes.
Resumo:
This paper presents a comprehensive review of scientific and grey literature on gross pollutant traps (GPTs). GPTs are designed with internal screens to capture gross pollutants—organic matter and anthropogenic litter. Their application involves professional societies, research organisations, local city councils, government agencies and the stormwater industry—often in partnership. In view of this, the 113 references include unpublished manuscripts from these bodies along with scientific peer-reviewed conference papers and journal articles. The literature reviewed was organised into a matrix of six main devices and nine research areas (testing methodologies) which include: design appraisal study, field monitoring/testing, experimental flow fields, gross pollutant capture/retention characteristics, residence time calculations, hydraulic head loss, screen blockages, flow visualisations and computational fluid dynamics (CFD). When the fifty-four item matrix was analysed, twenty-eight research gaps were found in the tabulated literature. It was also found that the number of research gaps increased if only the scientific literature was considered. It is hoped, that in addition to informing the research community at QUT, this literature review will also be of use to other researchers in this field.
Resumo:
It is accepted that the efficiency of sugar cane clarification is closely linked with sugar juice composition (including suspended or insoluble impurities), the inorganic phosphate content, the liming condition and type, and the interactions between the juice components. These interactions are not well understood, particularly those between calcium, phosphate, and sucrose in sugar cane juice. Studies have been conducted on calcium oxide (CaO)/phosphate/sucrose systems in both synthetic and factory juices to provide further information on the defecation process (i.e., simple liming to effect impurity removal) and to identify an effective clarification process that would result in reduced scaling of sugar factory evaporators, pans, and centrifugals. Results have shown that a two-stage process involving the addition of lime saccharate to a set juice pH followed by the addition of sodium hydroxide to a final juice pH or a similar two-stage process where the order of addition of the alkalis is reversed prior to clarification reduces the impurity loading of the clarified juice compared to that of the clarified juice obtained by the conventional defecation process. The treatment process showed reductions in CaO (27% to 50%) and MgO (up to 20%) in clarified juices with no apparent loss in juice clarity or increase in residence time of the mud particles compared to those in the conventional process. There was also a reduction in the SiO2 content. However, the disadvantage of this process is the significant increase in the Na2O content.
Resumo:
In this study available solid tire wastes in Bangladesh were characterized through proximate and ultimate analyses, gross calorific values and thermogravimetric analysis to investigate their suitability as feedstock for thermal recycling by pyrolysis technology. A new approach in heating system, fixedbed fire-tube heating pyrolysis reactor has been designed and fabricated for the recovery of liquid hydrocarbons from solid tire wastes. The tire wastes were pyrolysed in the internally heated fixed-bed fire-tube heating reactor and maximum liquid yield of 46-55 wt% of solid tire waste was obtained at a temperature of 475 oC, feed size 4 cm3, with a residence time of 5 s under N2 atmosphere. The liquid products were characterized by physical properties, elemental analysis, FT-IR, 1H-NMR, GC MS techniques and distillation. The results show that the liquid products are comparable to petroleum fuels whereas fractional distillations and desulphurization are essential to be used as alternative for diesel engine fuels.
Resumo:
Crashes that occur on motorways contribute to a significant proportion (40-50%) of non-recurrent motorway congestions. Hence, reducing the frequency of crashes assists in addressing congestion issues (Meyer, 2008). Crash likelihood estimation studies commonly focus on traffic conditions in a short time window around the time of a crash while longer-term pre-crash traffic flow trends are neglected. In this paper we will show, through data mining techniques that a relationship between pre-crash traffic flow patterns and crash occurrence on motorways exists. We will compare them with normal traffic trends and show this knowledge has the potential to improve the accuracy of existing models and opens the path for new development approaches. The data for the analysis was extracted from records collected between 2007 and 2009 on the Shibuya and Shinjuku lines of the Tokyo Metropolitan Expressway in Japan. The dataset includes a total of 824 rear-end and sideswipe crashes that have been matched with crashes corresponding to traffic flow data using an incident detection algorithm. Traffic trends (traffic speed time series) revealed that crashes can be clustered with regards to the dominant traffic patterns prior to the crash. Using the K-Means clustering method with Euclidean distance function allowed the crashes to be clustered. Then, normal situation data was extracted based on the time distribution of crashes and were clustered to compare with the “high risk” clusters. Five major trends have been found in the clustering results for both high risk and normal conditions. The study discovered traffic regimes had differences in the speed trends. Based on these findings, crash likelihood estimation models can be fine-tuned based on the monitored traffic conditions with a sliding window of 30 minutes to increase accuracy of the results and minimize false alarms.
Resumo:
ROBERT EVAPORATORS in Australian sugar factories are traditionally constructed with 44.45 mm outside diameter stainless steel tubes of ~2 m length for all stages of evaporation. There are a few vessels with longer tubes (up to 2.8 m) and smaller and larger diameters (38.1 and 50.8 mm). Queensland University of Technology is undertaking a study to investigate the heat transfer performance of tubes of different lengths and diameters for the whole range of process conditions typically encountered in the evaporator set. Incorporation of these results into practical evaporator designs requires an understanding of the cost implications for constructing evaporator vessels with calandrias having tubes of different dimensions. Cost savings are expected for tubes of smaller diameter and longer length in terms of material, labour and installation costs in the factory. However these savings must be considered in terms of the heat transfer area requirements for the evaporation duty, which will likely be a function of the tube dimensions. In this paper a capital cost model is described which provides a relative cost of constructing and installing Robert evaporators of the same heating surface area but with different tube dimensions. Evaporators of 2000, 3000, 4000 and 5000 m2 are investigated. This model will be used in conjunction with the heat transfer efficiency data (when available) to determine the optimum tube dimensions for a new evaporator at a specified evaporation duty. Consideration is also given to other factors such as juice residence time (and implications for sucrose degradation and control) and droplet de-entrainment in evaporators of different tube dimensions.