804 resultados para REFRACTIVE ERRORS
Resumo:
Texture information in the iris image is not uniform in discriminatory information content for biometric identity verification. The bits in an iris code obtained from the image differ in their consistency from one sample to another for the same identity. In this work, errors in bit strings are systematically analysed in order to investigate the effect of light-induced and drug-induced pupil dilation and constriction on the consistency of iris texture information. The statistics of bit errors are computed for client and impostor distributions as functions of radius and angle. Under normal conditions, a V-shaped radial trend of decreasing bit errors towards the central region of the iris is obtained for client matching, and it is observed that the distribution of errors as a function of angle is uniform. When iris images are affected by pupil dilation or constriction the radial distribution of bit errors is altered. A decreasing trend from the pupil outwards is observed for constriction, whereas a more uniform trend is observed for dilation. The main increase in bit errors occurs closer to the pupil in both cases.
Resumo:
The term “Human error” can simply be defined as an error which made by a human. In fact, Human error is an explanation of malfunctions, unintended consequents from operating a system. There are many factors that cause a person to have an error due to the unwanted error of human. The aim of this paper is to investigate the relationship of human error as one of the factors to computer related abuses. The paper beings by computer-relating to human errors and followed by mechanism mitigate these errors through social and technical perspectives. We present the 25 techniques of computer crime prevention, as a heuristic device that assists. A last section discussing the ways of improving the adoption of security, and conclusion.
Resumo:
A Monte Carlo model of an Elekta iViewGT amorphous silicon electronic portal imaging device (a-Si EPID) has been validated for pre-treatment verification of clinical IMRT treatment plans. The simulations involved the use of the BEAMnrc and DOSXYZnrc Monte Carlo codes to predict the response of the iViewGT a-Si EPID model. The predicted EPID images were compared to the measured images obtained from the experiment. The measured EPID images were obtained by delivering a photon beam from an Elekta Synergy linac to the Elekta iViewGT a-Si EPID. The a-Si EPID was used with no additional build-up material. Frame averaged EPID images were acquired and processed using in-house software. The agreement between the predicted and measured images was analyzed using the gamma analysis technique with acceptance criteria of 3% / 3 mm. The results show that the predicted EPID images for four clinical IMRT treatment plans have a good agreement with the measured EPID signal. Three prostate IMRT plans were found to have an average gamma pass rate of more than 95.0 % and a spinal IMRT plan has the average gamma pass rate of 94.3 %. During the period of performing this work a routine MLC calibration was performed and one of the IMRT treatments re-measured with the EPID. A change in the gamma pass rate for one field was observed. This was the motivation for a series of experiments to investigate the sensitivity of the method by introducing delivery errors, MLC position and dosimetric overshoot, into the simulated EPID images. The method was found to be sensitive to 1 mm leaf position errors and 10% overshoot errors.
Resumo:
Purpose To investigate the effect of different levels of refractive blur on real-world driving performance measured under day and nighttime conditions. Methods Participants included 12 visually normal, young adults (mean age = 25.8 ± 5.2 years) who drove an instrumented research vehicle around a 4 km closed road circuit with three different levels of binocular spherical refractive blur (+0.50 diopter sphere [DS], +1.00 DS, +2.00 DS) compared with a baseline condition. The subjects wore optimal spherocylinder correction and the additional blur lenses were mounted in modified full-field goggles; the order of testing of the blur conditions was randomized. Driving performance was assessed in two different sessions under day and nighttime conditions and included measures of road signs recognized, hazard detection and avoidance, gap detection, lane-keeping, sign recognition distance, speed, and time to complete the course. Results Refractive blur and time of day had significant effects on driving performance (P < 0.05), where increasing blur and nighttime driving reduced performance on all driving tasks except gap judgment and lane keeping. There was also a significant interaction between blur and time of day (P < 0.05), such that the effects of blur were exacerbated under nighttime driving conditions; performance differences were evident even for +0.50 DS blur relative to baseline for some measures. Conclusions The effects of blur were greatest under nighttime conditions, even for levels of binocular refractive blur as low as +0.50 DS. These results emphasize the importance of accurate and up-to-date refractive correction of even low levels of refractive error when driving at night.
Resumo:
Purpose: To estimate refractive indices used with the Lenstar biometer. Methods: Axial lengths of model eyes were determined using an IOLMaster biometer and a Lenstar; comparing these lengths gave an overall eye index for the Lenstar. Using the Lenstar Graphical User interface, we determined that boundaries between media could be manipulated so that there were opposite changes in optical pathlength on either side of the boundary and specified changes in distances determined the ratios of media indices. These ratios were combined with the overall eye index to estimate indices. Results: The IOLMaster and Lenstar produced axial length estimates to within ±0.01 mm. Estimations of group refractive indices were 1.340, 1.341, 1.415 and 1.354 for cornea, aqueous, lens and overall eye, respectively. The aqueous and lens indices, but not those for the cornea, are similar to schematic eye indices and reasonable lens indices. Conclusion: The Lenstar appears to use different refractive indices for different ocular media.
Resumo:
Bounds on the expectation and variance of errors at the output of a multilayer feedforward neural network with perturbed weights and inputs are derived. It is assumed that errors in weights and inputs to the network are statistically independent and small. The bounds obtained are applicable to both digital and analogue network implementations and are shown to be of practical value.
Resumo:
It is important that we understand the factors and conditions that shape driver behaviour – those conditions within the road transport system that contribute to driver error and the situations where driver non-compliance to road regulations is likely. This report presents the findings derived from a program of research investigating the nature of errors made by drivers, involving a literature review and an on-road study. The review indicates that, despite significant investigation, the role of different error types in road traffic crashes remains unclear, as does the role of the wider road transport system failures in driver error causation.
Resumo:
Purpose The aim of this study was to systematically investigate the effect of different levels of refractive blur and driver age on night-time pedestrian recognition and determine whether clothing that has been shown to improve pedestrian conspicuity is robust to the effects of blur. Methods Night-time pedestrian recognition was measured for 24 visually normal participants (12 younger M=24.9±4.5 years and 12 older adults M=77.6±5.7 years) for three levels of binocular blur (+0.50 D, +1.00 D, +2.00 D) compared to baseline (optimal refractive correction). Pedestrians walked in place on a closed road circuit and wore one of three clothing conditions: i) everyday clothing, ii) a retro-reflective vest and iii) retro-reflective tape positioned on the extremities in a configuration that conveyed biological motion (known as “biomotion”); the order of conditions was randomized between participants. Pedestrian recognition distances were recorded for each blur and pedestrian clothing combination while participants drove an instrumented vehicle around a closed road course. Results The recognition distances for pedestrians were significantly reduced (p<0.05) by all levels of blur compared to baseline. Pedestrians wearing “biomotion” clothing were recognized at significantly longer distances than for the other clothing configurations in all blur conditions. However, these effects were smaller for the older adults, who had much shorter recognition distances for all conditions tested. Conclusions In summary, even small amounts of blur had a significant detrimental effect on night-time pedestrian recognition. Biomotion retro-reflective clothing was effective, even under moderately degraded visibility conditions, for both young and older drivers.
Resumo:
BACKGROUND Tilted disc syndrome (TDS) is associated with characteristic ocular findings. The purpose of this study was to evaluate the ocular, refractive, and biometric characteristics in patients with TDS. METHODS This case-control study included 41 eyes of 25 patients who had established TDS and 40 eyes of 20 healthy control subjects. All participants underwent a complete ocular examination, including refraction and analysis using Fourier transformation, slit lamp biomicroscopy, pachymetry, keratometry, and ocular biometry. Corneal topography examinations were performed in the syndrome group only. RESULTS There were no significant differences in spherical equivalent (P = 0.13) and total astigmatism (P = 0.37) between groups. However, mean best spectacle-corrected visual acuity (Log Mar) was significantly worse in TDS patients (P = 0.003). The lenticular astigmatism was greater in the syndrome group, whereas the corneal component was greater in controls (P = 0.059 and P = 0.028, respectively). The measured biometric features were the same in both groups, except for the lens thickness and lens-axial length factor, which were greater in the TDS group (P = 0.007 and P = 0.055, respectively). CONCLUSIONS Clinically significant lenticular astigmatism, more oblique corneal astigmatism, and thicker lenses were characteristic findings in patients with TDS.
Resumo:
Purpose: To evaluate the ocular refractive and biometric characteristics in patients with tilted disc syndrome (TDS). Methods: This case-control study comprised 41 eyes of 25 patients with established TDS and forty eyes of 20 age- and sex-matched healthy control subjects. All had a complete ocular examination including refraction and analysis using Fourier transformation, slit lamp biomicroscopy, pachymetry keratometry, and ocular biometry. Corneal topography examinations were performed in the syndrome group only. Results: There were no significant differences in spherical equivalent (p = 0.334) and total astigmatism (p= 0.246) between groups. However, mean best spectacular corrected visual acuity was significantly worse in TDS patients (P < 0.001). The lenticular astigmatism was significantly greater in the syndrome group, while the corneal component was greater in the controls (p = 0.004 and p = 0.002, respectively). The measured biometric features were the same in both groups, except for the lens thickness, relative lens position, and lens-axial length factor which were greater in the TDS group (p = 0.002, p = 0.015, and p = 0.025, respectively). Conclusions: Clinically significant lenticular astigmatism, more oblique corneal astigmatism, and thicker lens were characteristic findings in patients with TDS.
Resumo:
This research investigated the visual demands in modern primary school classrooms and also the impact of common refractive anomalies on a child's ability to perform academic-related tasks. The results showed that relatively high levels of visual acuity, contrast demand and sustained accommodative-convergence are required to perform optimally in the modern classroom environment. It was also demonstrated that relatively low magnitudes of uncorrected refractive error may have a detrimental impact on children's ability to perform academic-related activities at school, with sustained near work further exacerbating this effect. These findings have important implications for both eye care practitioners and education authorities.
Resumo:
Lattice-based cryptographic primitives are believed to offer resilience against attacks by quantum computers. We demonstrate the practicality of post-quantum key exchange by constructing cipher suites for the Transport Layer Security (TLS) protocol that provide key exchange based on the ring learning with errors (R-LWE) problem, we accompany these cipher suites with a rigorous proof of security. Our approach ties lattice-based key exchange together with traditional authentication using RSA or elliptic curve digital signatures: the post-quantum key exchange provides forward secrecy against future quantum attackers, while authentication can be provided using RSA keys that are issued by today's commercial certificate authorities, smoothing the path to adoption. Our cryptographically secure implementation, aimed at the 128-bit security level, reveals that the performance price when switching from non-quantum-safe key exchange is not too high. With our R-LWE cipher suites integrated into the Open SSL library and using the Apache web server on a 2-core desktop computer, we could serve 506 RLWE-ECDSA-AES128-GCM-SHA256 HTTPS connections per second for a 10 KiB payload. Compared to elliptic curve Diffie-Hellman, this means an 8 KiB increased handshake size and a reduction in throughput of only 21%. This demonstrates that provably secure post-quantum key-exchange can already be considered practical.
Resumo:
PURPOSE To estimate refractive indices used by the Lenstar biometer to translate measured optical path lengths into geometrical path lengths within the eye. METHODS Axial lengths of model eyes were determined using the IOLMaster and Lenstar biometers; comparing those lengths gave an overall eye refractive index estimate for the Lenstar. Using the Lenstar Graphical User Interface, we noticed that boundaries between media could be manipulated and opposite changes in optical path lengths on either side of the boundary could be introduced. Those ratios were combined with the overall eye refractive index to estimate separate refractive indices. Furthermore, Haag-Streit provided us with a template to obtain 'air thicknesses' to compare with geometrical distances. RESULTS The axial length estimates obtained using the IOLMaster and the Lenstar agreed to within 0.01 mm. Estimates of group refractive indices used in the Lenstar were 1.340, 1.341, 1.415, and 1.354 for cornea, aqueous, lens, and overall eye, respectively. Those refractive indices did not match those of schematic eyes, but were close in the cases of aqueous and lens. Linear equations relating air thicknesses to geometrical thicknesses were consistent with our findings. CONCLUSION The Lenstar uses different refractive indices for different ocular media. Some of the refractive indices, such as that for the cornea, are not physiological; therefore, it is likely that the calibrations in the instrument correspond to instrument-specific corrections and are not the real optical path lengths.
Resumo:
Precise satellite orbit and clocks are essential for providing high accuracy real-time PPP (Precise Point Positioning) service. However, by treating the predicted orbits as fixed, the orbital errors may be partially assimilated by the estimated satellite clock and hence impact the positioning solutions. This paper presents the impact analysis of errors in radial and tangential orbital components on the estimation of satellite clocks and PPP through theoretical study and experimental evaluation. The relationship between the compensation of the orbital errors by the satellite clocks and the satellite-station geometry is discussed in details. Based on the satellite clocks estimated with regional station networks of different sizes (∼100, ∼300, ∼500 and ∼700 km in radius), results indicated that the orbital errors compensated by the satellite clock estimates reduce as the size of the network increases. An interesting regional PPP mode based on the broadcast ephemeris and the corresponding estimated satellite clocks is proposed and evaluated through the numerical study. The impact of orbital errors in the broadcast ephemeris has shown to be negligible for PPP users in a regional network of a radius of ∼300 km, with positioning RMS of about 1.4, 1.4 and 3.7 cm for east, north and up component in the post-mission kinematic mode, comparable with 1.3, 1.3 and 3.6 cm using the precise orbits and the corresponding estimated clocks. Compared with the DGPS and RTK positioning, only the estimated satellite clocks are needed to be disseminated to PPP users for this approach. It can significantly alleviate the communication burdens and therefore can be beneficial to the real time applications.
Resumo:
Background Previously studies showed that inverse dynamics based on motion analysis and force-plate is inaccurate compared to direct measurements for individuals with transfemoral amputation (TFA). Indeed, direct measurements can appropriately take into account the absorption at the prosthetic foot and the resistance at the prosthetic knee. [1-3] However, these studies involved only a passive prosthetic knee. Aim The objective of the present study was to investigate if different types of prosthetic feet and knees can exhibit different levels of error in the knee joint forces and moments. Method Three trials of walking at self-selected speed were analysed for 9 TFAs (7 males and 2 females, 47±9 years old, 1.76±0.1 m 79±17 kg) with a motion analysis system (Qualisys, Goteborg, Sweden), force plates (Kitsler, Winterthur, Switzerland) and a multi-axial transducer (JR3, Woodland, USA) mounted above the prosthetic knee [1-17]. TFAs were all fitted with an osseointegrated implant system. The prostheses included different type of foot (N=5) and knee (N=3) components. The root mean square errors (RMSE) between direct measurements and the knee joint forces and moments estimated by inverse dynamics were computed for stance and swing phases of gait and expressed as a percentage of the measured amplitudes. A one-way Kruskal-Wallis ANOVA was performed (Statgraphics, Levallois-Perret, France) to analyse the effects of the prosthetic components on the RMSEs. Cross-effects and post-hoc tests were not analysed in this study. Results A significant effect (*) was found for the type of prosthetic foot on anterior-posterior force during swing (p=0.016), lateral-medial force during stance (p=0.009), adduction-abduction moment during stance (p=0.038), internal-external rotation moment during stance (p=0.014) and during swing (p=0.006), and flexion-extension moment during stance (p = 0.035). A significant effect (#) was found for the type of prosthetic knee on anterior-posterior force during swing (p=0.018) and adduction-abduction moment during stance (p=0.035). Discussion & Conclusion The RMSEs were larger during swing than during stance. It is because the errors on accelerations (as derived from motion analysis) become substantial with respect to the external loads. Thus, inverse dynamics during swing should be analysed with caution because the mean RMSEs are close to 50%. Conversely, there were fewer effects of the prosthetic components on RMSE during swing than during stance and, accordingly, fewer effects due to knees than feet. Thus, inverse dynamics during stance should be used with caution for comparison of different prosthetic components.