992 resultados para RECEPTOR COMPLEXES
Resumo:
Neutrophil Elastase (NE) is a pro-inflammatory protease present at higher than normal levels in the lung during inflammatory disease. NE regulates IL-8 production from airway epithelial cells and can activate both EGFR and TLR4. TACE/ADAM17 has been reported to trans-activate EGFR in response to NE. Here, using 16HBE14o-human bronchial epithelial cells we demonstrate a new mechanism by which NE regulates both of these events. A high molecular weight soluble metalloprotease activity detectable only in supernatants from NE-treated cells by gelatin and casein zymography was confirmed to be meprin alpha by Western immunoblotting. In vitro studies demonstrated the ability of NE to activate meprin alpha, which in turn could release soluble TGFalpha and induce IL-8 production from 16HBE14o- cells. These effects were abrogated by actinonin, a specific meprin inhibitor. NE-induced IL-8 expression was also inhibited by meprin alpha siRNA. Immunoprecipitation studies detected EGFR/TLR4 complexes in NE-stimulated cells overexpressing these receptors. Confocal studies confirmed colocalization of EGFR and TLR4 in 16HBE14o- cells stimulated with meprin alpha. NFkappaB was also activated via MyD88 in these cells by meprin alpha. In bronchoalveolar lavage fluid from NE knock-out mice infected intra-tracheally with Pseudomonas aeruginosa meprin alpha was significantly decreased compared with control mice, and was significantly increased and correlated with NE activity, in bronchoalveolar lavage fluid from individuals with cystic fibrosis but not healthy controls. The data describe a previously unidentified lung metalloprotease meprin alpha, and its role in NE-induced EGFR and TLR4 activation and IL-8 production.
Resumo:
The receptor tyrosine kinase Tie2, and its activating ligand Angiopoietin-1 (Ang1), are required for vascular remodelling and vessel integrity, whereas Ang2 may counteract these functions. However, it is not known how Tie2 transduces these different signals. Here, we show that Ang1 induces unique Tie2 complexes in mobile and confluent endothelial cells. Matrix-bound Ang1 induced cell adhesion, motility and Tie2 activation in cell-matrix contacts that became translocated to the trailing edge in migrating endothelial cells. In contrast, in contacting cells Ang1 induced Tie2 translocation to cell-cell contacts and the formation of homotypic Tie2-Tie2 trans-associated complexes that included the vascular endothelial phosphotyrosine phosphatase, leading to inhibition of paracellular permeability. Distinct signalling proteins were preferentially activated by Tie2 in the cell-matrix and cell-cell contacts, where Ang2 inhibited Ang1-induced Tie2 activation. This novel type of cellular microenvironment-dependent receptor tyrosine kinase activation may explain some of the effects of angiopoietins in angiogenesis and vessel stabilization.
Resumo:
Hematopoietic cells uniquely express G(alpha16), a G protein alpha-subunit of the G(q)-type. G(alpha16) is obligatory for P2Y2 receptor-dependent Ca2+-mobilization in human erythroleukemia cells and induces hematopoietic cell differentiation. We tested whether P2Y2 receptors physically interact with G(alpha16). Receptor and G protein were fused to cyan (CFP) and yellow (YFP) variants of the green fluorescent protein (GFP), respectively. When expressed in K562 leukemia cells, the fusion proteins were capable of triggering a Ca2+-signal upon receptor stimulation, demonstrating their functional integrity. In fluorescence resonance energy transfer (FRET) measurements using confocal microscopy, a strong FRET signal from the plasma membrane region of fixed, resting cells was detected when the receptor was co-expressed with the G protein as the FRET acceptor, as well as when the CFP-tagged receptor was co-expressed with receptor fused to YFP. We conclude that, under resting conditions, G(alpha16) and P2Y2 receptors form constitutive complexes, and that the P2Y2 receptor is present as an oligomer.
Resumo:
The morbillivirus cell entry machinery consists of a fusion (F) protein trimer that refolds to mediate membrane fusion following receptor-induced conformational changes in its binding partner, the tetrameric attachment (H) protein. To identify molecular determinants that control F refolding, we generated F chimeras between measles virus (MeV) and canine distemper virus (CDV). We located a central pocket in the globular head domain of CDV F that regulates the stability of the metastable, prefusion conformational state of the F trimer. Most mutations introduced into this "pocket'" appeared to mediate a destabilizing effect, a phenotype associated with enhanced membrane fusion activity. Strikingly, under specific triggering conditions (i.e., variation of receptor type and H protein origin), some F mutants also exhibited resistance to a potent morbillivirus entry inhibitor, which is known to block F triggering by enhancing the stability of prefusion F trimers. Our data reveal that the molecular nature of the F stimulus and the intrinsic stability of metastable prefusion F both regulate the efficiency of F refolding and escape from small-molecule refolding blockers. IMPORTANCE: With the aim to better characterize the thermodynamic basis of morbillivirus membrane fusion for cell entry and spread, we report here that the activation energy barrier of prefusion F trimers together with the molecular nature of the triggering "stimulus" (attachment protein and receptor types) define a "triggering range," which governs the initiation of the membrane fusion process. A central "pocket" microdomain in the globular F head contributes substantially to the regulation of the conformational stability of the prefusion complexes. The triggering range also defines the mechanism of viral escape from entry inhibitors and describes how the cellular environment can affect membrane fusion efficiency.
Resumo:
Neurotensin(8-13) (NTS(8-13)) analogs with C- and/or N-terminal β-amino acid residues and three DOTA derivatives thereof have been synthesized (i.e., 1-6). A virtual docking experiment showed almost perfect fit of one of the 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) derivatives, 6a, into a crystallographically identified receptor NTSR1 (Fig.1). The affinities for the receptors of the NTS analogs and derivatives are low, when determined with cell-membrane homogenates, while, with NTSR1-exhibiting cancer tissues, affinities in the single-digit nanomolar range can be observed (Table 2). Most of the β-amino acid-containing NTS(8-13) analogs (Table 1 and Fig.2), including the (68) Ga complexes of the DOTA-substituted ones (6; Figs.2 and 5), are stable for ca. 1 h in human serum and plasma, and in murine plasma. The biodistributions of two (68) Ga complexes (of 6a and 6b) in HT29 tumor-bearing nude mice, in the absence and in the presence of a blocking compound, after 10, 30, and 60 min (Figs. 3 and 4) lead to the conclusion that the amount of specifically bound radioligand is rather low. This was confirmed by PET-imaging experiments with the tumor-bearing mice (Fig.6). Comparison of the in vitro plasma stability (after 1 h) with the ex vivo blood content (after 10-15 min) of the two (68) Ga complexes shows that they are rapidly cleaved in the animals (Fig.5).
Resumo:
The length of time that integral membrane proteins reside on the plasma membrane is regulated by endocytosis, a process that can inactivate these proteins by removing them from the membrane and may ultimately result in their degradation. Proteins are internalized and pass through multiple distinct intracellular compartments where targeting decisions determine their fate. Membrane proteins initially enter early endosomes, and subsequently late endosomes/multivesicular bodies (MVBs), before being degraded in the lysosome. The MVB is a subset of late endosomes characterized by the appearance of small vesicles in its luminal compartment. These vesicles contain cargo proteins sorted from the limiting membrane of the MVB. Proteins not sorted into luminal vesicles remain on the MVB membrane, from where they may be recycled back to the plasma membrane. In the case of receptor tyrosine kinases (RTKs), such as epidermal growth factor (EGF) receptor, this important sorting step determines whether a protein returns to the surface to participate in signaling, or whether its signaling properties are inactivated through its degradation in the lysosome. Hrs is a protein that resides on endosomes and is known to recruit sorting complexes that are vital to this sorting step. These sorting complexes are believed to recognize ubiquitin as sorting signals. However, the link between MVB sorting machinery and the ubiquitination machinery is not known. Recently, Hrs was shown to recruit and bind an E3 ubiquitin ligase, UBE4B, to endosomes. In an assay that is able to measure cargo movement, the disruption of the Hrs-UBE4B interaction showed impaired sorting of EGF receptor into MVBs. My hypothesis is that UBE4B may be the connection between MVB sorting and ubiquitination. This study addresses the role of UBE4B in the trafficking and ubiquitination of EGF receptor. I created stable cell lines that either overexpresses UBE4B or expresses a UBE4B with no ligase activity. Levels of EGF receptor were analyzed after certain periods of ligand-induced receptor internalization. I observed that higher expression levels of UBE4B correspond to increased degradation of EGF receptor. In an in vitro ubiquitination assay, I also determined that UBE4B mediates the ubiquitination of EGF receptor. These data suggest that UBE4B is required for EGFR degradation specifically because it ubiquitinates the receptor allowing it to be sorted into the internal vesicles of MVBs and subsequently degraded in lysosomes.
Resumo:
Attractant and repellent signaling conformers of the dual-signaling phototaxis receptor sensory rhodopsin I and its transducer subunit (SRI-HtrI) have recently been distinguished experimentally by the opposite connection of their retinylidene protonated Schiff bases to the outwardly located periplasmic side and inwardly located cytoplasmic side. Here we show that the pK(a) of the outwardly located Asp76 counterion in the outwardly connected conformer is lowered by approximately 1.5 units from that of the inwardly connected conformer. The pK(a) difference enables quantitative determination of the relative amounts of the two conformers in wild-type cells and behavioral mutants prior to photoexcitation, comparison of their absorption spectra, and determination of their relative signaling efficiency. We have shown that the one-photon excitation of the SRI-HtrI attractant conformer causes a Schiff base connectivity switch from inwardly connected to outwardly connected states in the attractant signaling photoreaction. Conversely, a second near-UV photon drives the complex back to the inwardly connected conformer in the repellent signaling photoreaction. The results suggest a model of the color-discriminating dual-signaling mechanism in which phototaxis responses (his-kinase modulation) result from the photointerconversion of the two oppositely connected SRI-HtrI conformers by one-photon and two-photon activation. Furthermore, we find that the related repellent phototaxis SRII-HtrII receptor complex has an outwardly connected retinylidene Schiff base like the repellent signaling forms of the SRI-HtrI complex, indicating the general applicability of macro conformational changes, which can be detected by the connectivity switch, to phototaxis signaling by sensory rhodopsin-transducer complexes.
Resumo:
Altering the number of surface receptors can rapidly modulate cellular responses to extracellular signals. Some receptors, like the transferrin receptor (TfR), are constitutively internalized and recycled to the plasma membrane. Other receptors, like the epidermal growth factor receptor (EGFR), are internalized after ligand binding and then ultimately degraded in the lysosome. Routing internalized receptors to different destinations suggests that distinct molecular mechanisms may direct their movement. Here, we report that the endosome-associated protein hrs is a subunit of a protein complex containing actinin-4, BERP, and myosin V that is necessary for efficient TfR recycling but not for EGFR degradation. The hrs/actinin-4/BERP/myosin V (CART [cytoskeleton-associated recycling or transport]) complex assembles in a linear manner and interrupting binding of any member to its neighbor produces an inhibition of transferrin recycling rate. Disrupting the CART complex results in shunting receptors to a slower recycling pathway that involves the recycling endosome. The novel CART complex may provide a molecular mechanism for the actin-dependence of rapid recycling of constitutively recycled plasma membrane receptors.
Resumo:
Using a "collision-coupling" model for $\beta \sb 2$-adrenergic receptor-mediated activation of adenylylcyclase in S49 lymphoma cells, the rate-limiting step of that activation was identified as the association of an "active-state", hormone-bound receptor (HR$\sp\*$) with a G$\sb{\rm s}$-adenylylcyclase moiety (G$\sb{\rm s}$C). It was subsequently hypothesized that the location of the rate-limiting step would not be shifted elsewhere in the activation scheme by receptor desensitization. The traditional focus of receptor desensitization studies has been on modifications of the receptor molecule itself. A "clear-cut" answer to the present hypothesis provides new information on modifications in the function of the receptor following desensitization.^ "Heterologous" desensitization was induced in wild type S49 cells with agents which increase intracellular cAMP without occupying $\beta\sb2$-adrenergic receptors; PGE$\sb1$, forskolin and dibutyryl cAMP. These treatments avoided overlapping effects on $\beta\sb2$-adrenergic receptors by the "homologous" mechanism, in which occupancy by hormone is causative. Although the steady-state activation rate was decreased following heterologous desensitization, that rate was still limited by the association between HR* and G$\sb{\rm s}$C. Thus "heterologous" desensitization acts at the equilibrium between HR and HR* (which is driven by hormone efficiency) such that HR* formation becomes less likely and the frequency of HR*G$\sb{\rm s}$C associations decreases.^ "Homologous" desensitization was induced by high (1-10$\mu$M) epinephrine concentrations in the S49 variant deficient in cAMP-dependent protein kinase, KIN$\sp-$. Use of KIN$\sp-$minimized overlapping effects by the "heterologous" mechanism, which is PKA-dependent. Following homologous desensitization, roughly 50% of the receptors in plasma membrane preparations no longer formed HR*G$\sb{\rm s}$C complexes; evidenced by a decrease in high-affinity hormone binding sites. The loss of HR*G$\sb{\rm s}$C formation did not appear related to the HR/HR* equilibrium. Increasing the efficiency of the assay agonist did nothing to "override" the effect. HR*G$\sb{\rm s}$C association was still the rate-limiting step among the remaining functional receptors. It was not distinguishable whether the remaining activity was "desensitized" due to adenylylcyclase having decreased access to receptors within plasma membrane fragments or due to an effect similar to "heterologous" desensitization. ^
Resumo:
Inflammatory bowel disease (IBD) is a common condition in dogs, and a dysregulated innate immunity is believed to play a major role in its pathogenesis. S100A12 is an endogenous damage-associated molecular pattern molecule, which is involved in phagocyte activation and is increased in serum/fecal samples from dogs with IBD. S100A12 binds to the receptor of advanced glycation end products (RAGE), a pattern-recognition receptor, and results of studies in human patients with IBD and other conditions suggest a role of RAGE in chronic inflammation. Soluble RAGE (sRAGE), a decoy receptor for inflammatory proteins (e.g., S100A12) that appears to function as an anti-inflammatory molecule, was shown to be decreased in human IBD patients. This study aimed to evaluate serum sRAGE and serum/fecal S100A12 concentrations in dogs with IBD. Serum and fecal samples were collected from 20 dogs with IBD before and after initiation of medical treatment and from 15 healthy control dogs. Serum sRAGE and serum and fecal S100A12 concentrations were measured by ELISA, and were compared between dogs with IBD and healthy controls, and between dogs with a positive outcome (i.e., clinical remission, n=13) and those that were euthanized (n=6). The relationship of serum sRAGE concentrations with clinical disease activity (using the CIBDAI scoring system), serum and fecal S100A12 concentrations, and histologic disease severity (using a 4-point semi-quantitative grading system) was tested. Serum sRAGE concentrations were significantly lower in dogs with IBD than in healthy controls (p=0.0003), but were not correlated with the severity of histologic lesions (p=0.4241), the CIBDAI score before (p=0.0967) or after treatment (p=0.1067), the serum S100A12 concentration before (p=0.9214) and after treatment (p=0.4411), or with the individual outcome (p=0.4066). Clinical remission and the change in serum sRAGE concentration after treatment were not significantly associated (p=0.5727); however, serum sRAGE concentrations increased only in IBD dogs with complete clinical remission. Also, dogs that were euthanized had significantly higher fecal S100A12 concentrations than dogs that were alive at the end of the study (p=0.0124). This study showed that serum sRAGE concentrations are decreased in dogs diagnosed with IBD compared to healthy dogs, suggesting that sRAGE/RAGE may be involved in the pathogenesis of canine IBD. Lack of correlation between sRAGE and S100A12 concentrations is consistent with sRAGE functioning as a non-specific decoy receptor. Further studies need to evaluate the gastrointestinal mucosal expression of RAGE in healthy and diseased dogs, and also the formation of S100A12-RAGE complexes.
Resumo:
The gastrin-releasing peptide receptor (GRPr) is an important molecular target for the visualization and therapy of tumors and can be targeted with radiolabeled bombesin derivatives. The present study aims to develop statine-based bombesin receptor antagonists suitable for labeling with 64Cu for imaging by positron emission tomography (PET). The potent GRPr antagonist D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 was conjugated to the sarcophagine (3,6,10,13,16,19-hexaazabicyclo[6.6.6] icosane=Sar) derivative 5-(8-methyl-3,6,10,13,16,19-hexaaza-bicyclo[6.6.6]icosan-1-ylamino)-5-oxopentanoic acid (MeCOSar) via PEG4 (LE1) and PEG2 (LE2) spacers and radiolabeled with 64Cu2+ with >95% yield and specific activities of about 100 MBq/nmol. Both Cu(II) conjugates have high affinity for GRPr (IC50: natCu-LE1, 1.4±0.1 nM; natCu-LE2, 3.8±0.6 nM). The antagonistic properties of both conjugates were confirmed by Ca2+-flux measurements. Biodistribution studies of Cu-64-LE1 exhibited specific targeting of the tumor (19.6±4.7% IA/g at 1 h p.i.) and GRPr-positive organs. Biodistribution and PET images at 4 and 24 h postinjection showed increasing tumor-to-background ratios with time. This was illustrated by the acquisition of PET images showing high tumor-to-normal tissue contrast. This study demonstrates the high affinity of the MeCOSar-PEGx-bombesin conjugates to GRPr. The stability of 64Cu complexes of MeCOSar, the long half-life of 64Cu, and the suitable biodistribution profile of the 64Cu-labeled peptides lead to PET images of high contrast suitable for potential translation into the clinic.
Resumo:
The Two State model describes how drugs activate receptors by inducing or supporting a conformational change in the receptor from “off” to “on”. The beta 2 adrenergic receptor system is the model system which was used to formalize the concept of two states, and the mechanism of hormone agonist stimulation of this receptor is similar to ligand activation of other seven transmembrane receptors. Hormone binding to beta 2 adrenergic receptors stimulates the intracellular production of cyclic adenosine monophosphate (cAMP), which is mediated through the stimulatory guanyl nucleotide binding protein (Gs) interacting with the membrane bound enzyme adenylylcyclase (AC). ^ The effects of cAMP include protein phosphorylation, metabolic regulation and transcriptional regulation. The beta 2 adrenergic receptor system is the most well known of its family of G protein coupled receptors. Ligands have been scrutinized extensively in search of more effective therapeutic agents at this receptor as well as for insight into the biochemical mechanism of receptor activation. Hormone binding to receptor is thought to induce a conformational change in the receptor that increases its affinity for inactive Gs, catalyzes the release of GDP and subsequent binding of GTP and activation of Gs. ^ However, some beta 2 ligands are more efficient at this transformation than others, and the underlying mechanism for this drug specificity is not fully understood. The central problem in pharmacology is the characterization of drugs in their effect on physiological systems, and consequently, the search for a rational scale of drug effectiveness has been the effort of many investigators, which continues to the present time as models are proposed, tested and modified. ^ The major results of this thesis show that for many b2 -adrenergic ligands, the Two State model is quite adequate to explain their activity, but dobutamine (+/−3,4-dihydroxy-N-[3-(4-hydroxyphenyl)-1-methylpropyl]- b -phenethylamine) fails to conform to the predictions of the Two State model. It is a weak partial agonist, but it forms a large amount of high affinity complexes, and these complexes are formed at low concentrations much better than at higher concentrations. Finally, dobutamine causes the beta 2 adrenergic receptor to form high affinity complexes at a much faster rate than can be accounted for by its low efficiency activating AC. Because the Two State model fails to predict the activity of dobutamine in three different ways, it has been disproven in its strictest form. ^
Resumo:
Plant nonspecific lipid transfer proteins (nsLTPs) bind a wide variety of lipids, which allows them to perform disparate functions. Recent reports on their multifunctionality in plant growth processes have posed new questions on the versatile binding abilities of these proteins. The lack of binding specificity has been customarily explained in qualitative terms on the basis of a supposed structural flexibility and nonspecificity of hydrophobic protein-ligand interactions. We present here a computational study of protein-ligand complexes formed between five nsLTPs and seven lipids bound in two different ways in every receptor protein. After optimizing geometries inmolecular dynamics calculations, we computed Poisson- Boltzmann electrostatic potentials, solvation energies, properties of the protein-ligand interfaces, and estimates of binding free energies of the resulting complexes. Our results provide the first quantitative information on the ligand abilities of nsLTPs, shed new light into protein-lipid interactions, and reveal new features which supplement commonly held assumptions on their lack of binding specificity.
Resumo:
During αβ thymocyte development, clonotype-independent CD3 complexes are expressed at the cell surface before the pre-T cell receptor (TCR). Signaling through clonotype-independent CD3 complexes is required for expression of rearranged TCRβ genes. On expression of a TCRβ polypeptide chain, the pre-TCR is assembled, and TCRβ locus allelic exclusion is established. We investigated the putative contribution of clonotype-independent CD3 complex signaling to TCRβ locus allelic exclusion in mice single-deficient or double-deficient for CD3ζ/η and/or p56lck. These mice display defects in the expression of endogenous TCRβ genes in immature thymocytes, proportional to the severity of CD3 complex malfunction. Exclusion of endogenous TCRβ VDJ (variable, diversity, joining) rearrangements by a functional TCRβ transgene was severely compromised in the single-deficient and double-deficient mutant mice. In contrast to wild-type mice, most of the CD25+ double-negative (DN) thymocytes of the mutant mice failed to express the TCRβ transgene, suggesting defective expression of the TCRβ transgene similar to endogenous TCRβ genes. In the mutant mice, a proportion of CD25+ DN thymocytes that failed to express the transgene expressed endogenous TCRβ polypeptide chains. Many double-positive cells of the mutant mice coexpressed endogenous and transgenic TCRβ chains or more than one endogenous TCRβ chain. The data suggest that signaling through clonotype-independent CD3 complexes may contribute to allelic exclusion of the TCRβ locus by inducing the expression of rearranged TCRβ genes in CD25+ DN thymocytes.
Resumo:
Estrogen receptor (ER) modulators produce distinct tissue-specific biological effects, but within the confines of the established models of ER action it is difficult to understand why. Previous studies have suggested that there might be a relationship between ER structure and activity. Different ER modulators may induce conformational changes in the receptor that result in a specific biological activity. To investigate the possibility of modulator-specific conformational changes, we have applied affinity selection of peptides to identify binding surfaces that are exposed on the apo-ERs α and β and on each receptor complexed with estradiol or 4-OH tamoxifen. These peptides are sensitive probes of receptor conformation. We show here that ER ligands, known to produce distinct biological effects, induce distinct conformational changes in the receptors, providing a strong correlation between ER conformation and biological activity. Furthermore, the ability of some of the peptides to discriminate between different ER α and ER β ligand complexes suggests that the biological effects of ER agonists and antagonists acting through these receptors are likely to be different.