997 resultados para RAT ASSAY
Resumo:
The aim of this study was to evaluate the mutagenicity (clastogenicity/aneugenicity) of a glycolic extract of Ziziphus joazeiro bark (GEZJ) by the micronucleus assay in mice bone marrow. Antimutagenic activity was also assessed using treatments associated with GEZJ and doxorubicin (DXR). Mice were evaluated 24-48 h after exposure to positive (N-nitroso-N-ethylurea, NEU - 50 mg.kg(-1) and DXR - 5 mg.kg(-1)) and negative (150 mM NaCl) controls, as well as treatment with GEZJ (0.5-2 g.kg(-1)), GEZJ (2 g.kg(-1)) + NEU and GEZJ (2 g.kg(-1)) + DXR. There were no significant differences in the frequencies of micronucleated polychromatic erythrocytes in mice treated with GEJZ and GEJZ + DXR compared to the negative controls, indicating that GEZJ was not mutagenic. Analysis of the polychromatic:normochromatic erythrocyte ratio revealed significant differences in the responses to doses of 0.5 g.kg(-1) and 1-2 g.kg(-1) and the positive control (NEU). These results indicated no systemic toxicity and moderate toxicity at lower and higher doses of GEZJ. The lack of mutagenicity and systemic toxicity in the antimutagenic assays, especially for treatment with GEZJ + DXR, suggested that phytochemical compounds in Z. joazeiro bark attenuated DXR-induced mutagenicity and the moderate systemic toxicity of a high dose of Z. joazeiro bark (2 g.kg(-1)). Further studies on the genotoxicity of Z. joazeiro extracts are necessary to establish the possible health risk in humans and to determine the potential as a chemopreventive agent for therapeutic use.
Resumo:
β-Carotene, zeaxanthin, lutein, β-cryptoxanthin, and lycopene are liposoluble pigments widely distributed in vegetables and fruits and, after ingestion, these compounds are usually detected in human blood plasma. In this study, we evaluated their potential to inhibit hemolysis of human erythrocytes, as mediated by the toxicity of peroxyl radicals (ROO•). Thus, 2,2'-azobis (2-methylpropionamidine) dihydrochloride (AAPH) was used as ROO• generator and the hemolysis assay was carried out in experimental conditions optimized by response surface methodology, and successfully adapted to microplate assay. The optimized conditions were verified at 30 × 10(6) cells/mL, 17 mM of AAPH for 3 h, at which 48 ± 5% of hemolysis was achieved in freshly isolated erythrocytes. Among the tested carotenoids, lycopene (IC(50) = 0.24 ± 0.05 μM) was the most efficient to prevent the hemolysis, followed by β-carotene (0.32 ± 0.02 μM), lutein (0.38 ± 0.02 μM), and zeaxanthin (0.43 ± 0.02 μM). These carotenoids were at least 5 times more effective than quercetin, trolox, and ascorbic acid (positive controls). β-Cryptoxanthin did not present any erythroprotective effect, but rather induced a hemolytic effect at the highest tested concentration (3 μM). These results suggest that selected carotenoids may have potential to act as important erythroprotective agents by preventing ROO•-induced toxicity in human erythrocytes.
Resumo:
The alterations due to aging in the peripheral nerves can affect the physiology of these structures. Thus, the purpose of the present study was to describe the activity of the MMP-2 and MMP-9, as well as the structure and composition of the extracellular matrix of the rat sciatic nerve during maturation and aging. Our results have shown that the extracellular matrix of the sciatic nerve of 30-, 180- and 730-day-old Wistar rats present ultrastructural, morphometrical and biochemical changes during aging. The perineurium was the structure most affected by age, as evidenced by a decrease in thickness and in collagen fibril content. Cytochemical analysis detected proteoglycans in the basal membrane of Schwann cells and around perineural cells, as well as on the collagen fibrils of the perineurium and endoneurium at all ages. Biochemical analyses showed that the quantity of non-collagenous proteins was higher in 730-day-old animals compared to other ages, while the uronic acid content was higher in 30-day-old animals. Morphometrical analysis detected greater numbers of myelinated fibers and increased myelin thickness in 180-day-old animals. Zymography analysis detected greater amounts and activity of MMP-2 and MMP-9 in 180- and 730-day-old animals compared to younger rats. In conclusion, our results showed changes in the structural organization and composition of extracellular matrix of the sciatic nerve during aging, such as increase in the non-collagenous protein content and higher MMP-2 and MMP-9 activity, decrease in uronic acid concentration and in collagen fibril content in the perineurium, as well as degeneration of nerve fibers.
Resumo:
Surgical treatment for enterocutaneous fistulas (EF) frequently fails. Cell therapy may represent a new approach to treatment. Mesenchymal stromal cells (MSCs) have high proliferative and differentiation capacity. This study aimed to investigate whether MSCs could adhere to suture filament (SF), promoting better EF healing. MSCs, 1 × 10(6), from adipose tissue (ATMSCs) were adhered to a Polyvicryl SF by adding a specific fibrin glue formulation. Adhesion was confirmed by confocal and scanning electron microscopy (SEM). A cecal fistula was created in 22 Wistar rats by incising the cecum and suturing the opening to the surgical wound subcutaneously with four separate stitches. The animals were randomly allocated to three groups: control (CG)-five animals, EF performed; injection (IG)-eight animals 1 × 10(6) ATMSCs injected around EF borders; and suture filament (SG): nine animals, sutured with 1 × 10(6) ATMSCs attached to the filaments with fibrin glue. Fistulas were photographed on the operation day and every 3 days until the 21st day and analyzed by two observers using ImageJ Software. Confocal and SEM results demonstrated ATMSCs adhered to SF (ATMSCs-SF). The average reduction size of the fistula area at 21st day was greater for the SG group (90.34%, P < 0.05) than the IG (71.80%) and CG (46.54%) groups. ATMSCs adhered to SF maintain viability and proliferative capacity. EF submitted to ATMSCs-SF procedure showed greater recovery and healing. This approach might be a new and effective tool for EF treatment.
Resumo:
The efficacy of the human papillomavirus type 16 (HPV-16)/HPV-18 AS04-adjuvanted vaccine against cervical infections with HPV in the Papilloma Trial against Cancer in Young Adults (PATRICIA) was evaluated using a combination of the broad-spectrum L1-based SPF10 PCR-DNA enzyme immunoassay (DEIA)/line probe assay (LiPA25) system with type-specific PCRs for HPV-16 and -18. Broad-spectrum PCR assays may underestimate the presence of HPV genotypes present at relatively low concentrations in multiple infections, due to competition between genotypes. Therefore, samples were retrospectively reanalyzed using a testing algorithm incorporating the SPF10 PCR-DEIA/LiPA25 plus a novel E6-based multiplex type-specific PCR and reverse hybridization assay (MPTS12 RHA), which permits detection of a panel of nine oncogenic HPV genotypes (types 16, 18, 31, 33, 35, 45, 52, 58, and 59). For the vaccine against HPV types 16 and 18, there was no major impact on estimates of vaccine efficacy (VE) for incident or 6-month or 12-month persistent infections when the MPTS12 RHA was included in the testing algorithm versus estimates with the protocol-specified algorithm. However, the alternative testing algorithm showed greater sensitivity than the protocol-specified algorithm for detection of some nonvaccine oncogenic HPV types. More cases were gained in the control group than in the vaccine group, leading to higher point estimates of VE for 6-month and 12-month persistent infections for the nonvaccine oncogenic types included in the MPTS12 RHA assay (types 31, 33, 35, 45, 52, 58, and 59). This post hoc analysis indicates that the per-protocol testing algorithm used in PATRICIA underestimated the VE against some nonvaccine oncogenic HPV types and that the choice of the HPV DNA testing methodology is important for the evaluation of VE in clinical trials. (This study has been registered at ClinicalTrials.gov under registration no. NCT00122681.).
Resumo:
The aim of this study was to investigate whether β-adrenoceptor (β-AR) overstimulation induced by in vivo treatment with isoproterenol (ISO) alters vascular reactivity and nitric oxide (NO) production and signaling in pulmonary arteries. Vehicle or ISO (0.3mgkg(-1)day(-1)) was administered daily to male Wistar rats. After 7days, the jugular vein was cannulated to assess right ventricular (RV) systolic pressure (SP) and end diastolic pressure (EDP). The extralobar pulmonary arteries were isolated to evaluate the relaxation responses, protein expression (Western blot), NO production (diaminofluorescein-2 fluorescence), and cyclic guanosine 3',5'-monophosphate (cGMP) levels (enzyme immunoassay kit). ISO treatment induced RV hypertrophy; however, no differences in RV-SP and EDP were observed. The pulmonary arteries from the ISO-treated group showed enhanced relaxation to acetylcholine that was abolished by the NO synthase (NOS) inhibitor N(ω)-nitro-l-arginine methyl ester (l-NAME); whereas relaxation elicited by sodium nitroprusside, ISO, metaproterenol, mirabegron, or KCl was not affected by ISO treatment. ISO-treated rats displayed enhanced endothelial NOS (eNOS) and vasodilator-stimulated phosphoprotein (VASP) expression in the pulmonary arteries, while phosphodiesterase-5 protein expression decreased. ISO treatment increased NO and cGMP levels and did not induce eNOS uncoupling. The present data indicate that β-AR overactivation enhances the endothelium-dependent relaxation of pulmonary arteries. This effect was linked to an increase in eNOS-derived NO production, cGMP formation and VASP content and to a decrease in phosphodiesterase-5 expression. Therefore, elevated NO bioactivity through cGMP/VASP signaling could represent a protective mechanism of β-AR overactivation on pulmonary circulation.
Resumo:
All-trans retinoic acid (atRA) maintains physiological stability of the prostate, and we reported that ethanol intake increases atRA in the rat prostate; however the mechanisms underlying these changes are unknown. We evaluated the impact of a low- and high-dose ethanol intake (UChA and UChB strains) on atRA metabolism in the dorsal and lateral prostate. Aldehyde dehydrogenase (ALDH) subtype 1A3 was increased in the dorsal prostate of UChA animals while ALDH1A1 and ALDH1A2 decreased in the lateral prostate. In UChB animals, ALDH1A1, ALDH1A2, and ALDH1A3 increased in the dorsal prostate, and ALDH1A3 decreased in the lateral prostate. atRA levels increased with the low activity of CYP2E1 and decreased with high CYP26 activity in the UChB dorsal prostate. Conversely, atRA was found to decrease when the activity of total CYP was increased in the UChA lateral prostate. Ethanol modulates the synthesis and catabolism of atRA in the prostate in a concentration-dependent manner.
Acupuncture Increases The Diameter And Reorganisation Of Collagen Fibrils During Rat Tendon Healing.
Resumo:
Our previous study showed that electroacupuncture (EA) increases the concentration and reorganisation of collagen in a rat model of tendon healing. However, the ultrastructure of collagen fibrils after acupuncture is unknown. To assess the effect of acupuncture protocols on the ultrastructure of collagen fibrils during tendon healing. Sixty-four rats were divided into the following groups: non-tenotomised (normal group), tenotomised (teno group), tenotomised and subjected to manual acupuncture at ST36 (ST36 group), BL57 (BL57 group) and ST36+BL57 (SB group) and EA at ST36+BL57 (EA group). The mass-average diameter (MAD) and the reorganisation of collagen fibril diameters were determined during the three phases of tendon healing (at 7, 14 and 21 days). The MAD increased during the three phases of healing in the SB group. In the EA group, MAD increased initially but was reduced at day 21. The reorganisation of collagen fibrils was improved in the EA and SB groups at days 14 and 21, respectively. EA at day 21 appeared to reduce the reorganisation. These results indicate that the use of EA up to day 14 and manual acupuncture at ST36+BL57 up to day 21 improve the ultrastructure of collagen fibrils, indicating strengthening of the tendon structure. These data suggest a potential role for acupuncture in rehabilitation protocols.
Resumo:
G-quadruplexes are secondary structures present in DNA and RNA molecules, which are formed by stacking of G-quartets (i.e., interaction of four guanines (G-tracts) bounded by Hoogsteen hydrogen bonding). Human PAX9 intron 1 has a putative G-quadruplex-forming region located near exon 1, which is present in all known sequenced placental mammals. Using circular dichroism (CD) analysis and CD melting, we showed that these sequences are able to form highly stable quadruplex structures. Due to the proximity of the quadruplex structure to exon-intron boundary, we used a validated double-reporter splicing assay and qPCR to analyze its role on splicing efficiency. The human quadruplex was shown to have a key role on splicing efficiency of PAX9 intron 1, as a mutation that abolished quadruplex formation decreased dramatically the splicing efficiency of human PAX9 intron 1. The less stable, rat quadruplex had a less efficient splicing when compared to human sequences. Additionally, the treatment with 360A, a strong ligand that stabilizes quadruplex structures, further increased splicing efficiency of human PAX9 intron 1. Altogether, these results provide evidences that G-quadruplex structures are involved in splicing efficiency of PAX9 intron 1.
Resumo:
Cyclosporin A (CsA) is a widely employed immunosuppressive drug that is associated with several side effects, among then hepatotoxicity. Heteropterys tomentosa is a Brazilian plant efficient in reducing damage caused by CsA on the rat testis and prostate. The aim of this study was to evaluate the effect of CsA and H. tomentosa (administered isolated or simultaneously) on the liver of Wistar rats. The animals were treated daily with water (control), CsA (15mg/kg/day), H. tomentosa infusion or CsA+H. tomentosa, for 21 or 56 days. The treatments did not alter liver morphology or cause fibrosis. H. tomentosa administered for 21 days increased the number of hepatocyte nuclei and Kupffer cell volumetric proportion. After 56 days of treatment, H. tomentosa administration did not alter the parameters analyzed. Biochemical plasma dosages and liver stereology showed impairment caused by CsA-treatment after 21 days; these results were not observed after 56 days of treatment. The simultaneous treatment with CsA and H. tomentosa for 21 or 56 days did not alleviate nor accentuate CsA hepatic effects. The present study showed that the 21 days treatment with CsA caused more alteration to the liver than the 56 days treatment; this could be related to hepatic recovery after the long term treatment.
Resumo:
The objective of the present study was to determine whether lesion of the subthalamic nucleus (STN) promoted by N-methyl-D-aspartate (NMDA) would rescue nigrostriatal dopaminergic neurons after unilateral 6-hydroxydopamine (6-OHDA) injection into the medial forebrain bundle (MFB). Initially, 16 mg 6-OHDA (6-OHDA group) or vehicle (artificial cerebrospinal fluid - aCSF; Sham group) was infused into the right MFB of adult male Wistar rats. Fifteen days after surgery, the 6-OHDA and SHAM groups were randomly subdivided and received ipsilateral injection of either 60 mM NMDA or aCSF in the right STN. Additionally, a control group was not submitted to stereotaxic surgery. Five groups of rats were studied: 6-OHDA/NMDA, 6-OHDA/Sham, Sham/NMDA, Sham/Sham, and Control. Fourteen days after injection of 6-OHDA, rats were submitted to the rotational test induced by apomorphine (0.1 mg/kg, ip) and to the open-field test. The same tests were performed again 14 days after NMDA-induced lesion of the STN. The STN lesion reduced the contralateral turns induced by apomorphine and blocked the progression of motor impairment in the open-field test in 6-OHDA-treated rats. However, lesion of the STN did not prevent the reduction of striatal concentrations of dopamine and metabolites or the number of nigrostriatal dopaminergic neurons after 6-OHDA lesion. Therefore, STN lesion is able to reverse motor deficits after severe 6-OHDA-induced lesion of the nigrostriatal pathway, but does not protect or rescue dopaminergic neurons in the substantia nigra pars compacta.
Resumo:
The aim of this study was to evaluate the bone repair using autogenous periosteum-derived cells (PDC) and bovine anorganic apatite and collagen (HA-COL). PDC from Wistar rats (n=10) were seeded on HA-COL discs and subjected to osteoinduction during 6 days. Critical-size defects in rat calvarias were treated with blood clot (G1), autogenous bone (G2), HA-COL (G3) and HA-COL combined with PDC (G4) (n=40), and then analyzed 1 and 3 months after surgeries. Radiographic analysis exhibited no significant temporal change. G1 and G2 had discrete new marginal bone, but the radiopacity of graft materials in G2, G3 and G4 impaired the detection of osteogenesis. At 3 months, histopathological analysis showed the presence of ossification islets in G1, which was more evident in G2, homogeneous new bone around HA-COL in G3 and heterogeneous new bone around HA-COL in G4 in addition to moderate presence of foreign body cells in G3 and G4. Histomorphometric analysis showed no change in the volume density of xenograft (p>0.05) and bone volume density in G2 was twice greater than in G1 and G4 after 3 months (p<0.05), but similar to G3. The PDC did not increase bone formation in vivo, although the biomaterial alone showed biocompatibility and osteoconduction capacity.
Resumo:
PURPOSE: To study were to reproduce an alveolar bone defect model in Wistar rats to be used for testing the efficacy of stem cell therapies. Additionally, we also aimed to determine the osteogenesis process of this osseous defect in the 1 month period post-surgery. METHODS: The animals were randomly divided into two groups of 7 animals each. A gingivobuccal incision was made, and a bone defect of 28 mm² of area was performed in the alveolar region. Animals were killed at 2 weeks after surgery (n=7) and 4 weeks after surgery (n=7). RESULTS: The average area of the alveolar defect at time point of 2 weeks was 22.27 ± 1.31 mm² and the average area of alveolar defect at time point of 4 weeks was 9.03 ± 1.17 mm². The average amount of bone formation at time point of 2 weeks was 5.73 ± 1.31 mm² and the average amount of bone formation at time point of 4 weeks was 19 ± 1.17 mm². Statistically significant differences between the amount of bone formation at 2 weeks and 4 weeks after surgery were seen (p=0.003). CONCLUSION: The highest rate of ossification occurred mostly from 2 to 4 weeks after surgery. This observation suggests that 4 weeks after the bone defect creation should be a satisfactory timing to assess the potential of bone inductive stem cells to accelerate bone regeneration in Wistar rats.
Resumo:
The genus Callistomys belongs to the rodent family Echimyidae, subfamily Echimyinae, and its only living representative is Callistomys pictus, a rare and vulnerable endemic species of the state of Bahia, Brazil. Callistomys has been previously classified as Nelomys, Loncheres, Isothrix and Echimys. In this paper we present the karyotype of Callistomys pictus, including CBG and GTG-banding patterns and silver staining of the nucleolus organizer regions (Ag-NORs). Comments on Callistomys pictus morphological traits and a compilation of Echimyinae chromosomal data are also included. Our analyses revealed that Callistomys can be recognized both by its distintinctive morphology and by its karyotype.
Resumo:
The dorsal raphe nucleus (DRN) is the origin of ascending serotonergic projections and is considered to be an important component of the brain circuit that mediates anxiety- and depression-related behaviors. A large fraction of DRN serotonin-positive neurons contain nitric oxide (NO). Disruption of NO-mediated neurotransmission in the DRN by NO synthase inhibitors produces anxiolytic- and antidepressant-like effects in rats and also induces nonspecific interference with locomotor activity. We investigated the involvement of the 5-HT1A autoreceptor in the locomotor effects induced by NO in the DRN of male Wistar rats (280-310 g, N = 9-10 per group). The NO donor 3-morpholinosylnomine hydrochloride (SIN-1, 150, and 300 nmol) and the NO scavenger S-3-carboxy-4-hydroxyphenylglycine (carboxy-PTIO, 0.1-3.0 nmol) were injected into the DRN of rats immediately before they were exposed to the open field for 10 min. To evaluate the involvement of the 5-HT1A receptor and the N-methyl-D-aspartate (NMDA) glutamate receptor in the locomotor effects of NO, animals were pretreated with the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 8 nmol), the 5-HT1A receptor antagonist N-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-2-pyridinyl-cyclohexanecarboxamide maleate (WAY-100635, 0.37 nmol), and the NMDA receptor antagonist DL-2-amino-7-phosphonoheptanoic acid (AP7, 1 nmol), followed by microinjection of SIN-1 into the DRN. SIN-1 increased the distance traveled (mean ± SEM) in the open-field test (4431 ± 306.1 cm; F7,63 = 2.44, P = 0.028) and this effect was blocked by previous 8-OH-DPAT (2885 ± 490.4 cm) or AP7 (3335 ± 283.5 cm) administration (P < 0.05, Duncan test). These results indicate that 5-HT1A receptor activation and/or facilitation of glutamate neurotransmission can modulate the locomotor effects induced by NO in the DRN.