877 resultados para RANDOM REGULAR GRAPHS
Resumo:
We give reasons why demographic parameters such as survival and reproduction rates are often modelled well in stochastic population simulation using beta distributions. In practice, it is frequently expected that these parameters will be correlated, for example with survival rates for all age classes tending to be high or low in the same year. We therefore discuss a method for producing correlated beta random variables by transforming correlated normal random variables, and show how it can be applied in practice by means of a simple example. We also note how the same approach can be used to produce correlated uniform triangular, and exponential random variables. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The objective of the present study was to estimate milk yield genetic parameters applying random regression models and parametric correlation functions combined with a variance function to model animal permanent environmental effects. A total of 152,145 test-day milk yields from 7,317 first lactations of Holstein cows belonging to herds located in the southeastern region of Brazil were analyzed. Test-day milk yields were divided into 44 weekly classes of days in milk. Contemporary groups were defined by herd-test-day comprising a total of 2,539 classes. The model included direct additive genetic, permanent environmental, and residual random effects. The following fixed effects were considered: contemporary group, age of cow at calving (linear and quadratic regressions), and the population average lactation curve modeled by fourth-order orthogonal Legendre polynomial. Additive genetic effects were modeled by random regression on orthogonal Legendre polynomials of days in milk, whereas permanent environmental effects were estimated using a stationary or nonstationary parametric correlation function combined with a variance function of different orders. The structure of residual variances was modeled using a step function containing 6 variance classes. The genetic parameter estimates obtained with the model using a stationary correlation function associated with a variance function to model permanent environmental effects were similar to those obtained with models employing orthogonal Legendre polynomials for the same effect. A model using a sixth-order polynomial for additive effects and a stationary parametric correlation function associated with a seventh-order variance function to model permanent environmental effects would be sufficient for data fitting.
Resumo:
A total of 152,145 weekly test-day milk yield records from 7317 first lactations of Holstein cows distributed in 93 herds in southeastern Brazil were analyzed. Test-day milk yields were classified into 44 weekly classes of DIM. The contemporary groups were defined as herd-year-week of test-day. The model included direct additive genetic, permanent environmental and residual effects as random and fixed effects of contemporary group and age of cow at calving as covariable, linear and quadratic effects. Mean trends were modeled by a cubic regression on orthogonal polynomials of DIM. Additive genetic and permanent environmental random effects were estimated by random regression on orthogonal Legendre polynomials. Residual variances were modeled using third to seventh-order variance functions or a step function with 1, 6,13,17 and 44 variance classes. Results from Akaike`s and Schwarz`s Bayesian information criterion suggested that a model considering a 7th-order Legendre polynomial for additive effect, a 12th-order polynomial for permanent environment effect and a step function with 6 classes for residual variances, fitted best. However, a parsimonious model, with a 6th-order Legendre polynomial for additive effects and a 7th-order polynomial for permanent environmental effects, yielded very similar genetic parameter estimates. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Random walks can undergo transitions from normal diffusion to anomalous diffusion as some relevant parameter varies, for instance the L,vy index in L,vy flights. Here we derive the Fokker-Planck equation for a two-parameter family of non-Markovian random walks with amnestically induced persistence. We investigate two distinct transitions: one order parameter quantifies log-periodicity and discrete scale invariance in the first moment of the propagator, whereas the second order parameter, known as the Hurst exponent, describes the growth of the second moment. We report numerical and analytical results for six critical exponents, which together completely characterize the properties of the transitions. We find that the critical exponents related to the diffusion-superdiffusion transition are identical in the positive feedback and negative feedback branches of the critical line, even though the former leads to classical superdiffusion whereas the latter gives rise to log-periodic superdiffusion.
Resumo:
We investigate here a modification of the discrete random pore model [Bhatia SK, Vartak BJ, Carbon 1996;34:1383], by including an additional rate constant which takes into account the different reactivity of the initial pore surface having attached functional groups and hydrogens, relative to the subsequently exposed surface. It is observed that the relative initial reactivity has a significant effect on the conversion and structural evolution, underscoring the importance of initial surface chemistry. The model is tested against experimental data on chemically controlled char oxidation and steam gasification at various temperatures. It is seen that the variations of the reaction rate and surface area with conversion are better represented by the present approach than earlier random pore models. The results clearly indicate the improvement of model predictions in the low conversion region, where the effect of the initially attached functional groups and hydrogens is more significant, particularly for char oxidation. It is also seen that, for the data examined, the initial surface chemistry is less important for steam gasification as compared to the oxidation reaction. Further development of the approach must also incorporate the dynamics of surface complexation, which is not considered here.
Resumo:
The trade spectrum of a simple graph G is defined to be the set of all t for which it is possible to assemble together t copies of G into a simple graph H, and then disassemble H into t entirely different copies of G. Trade spectra of graphs have applications to intersection problems, and defining sets, of G-designs. In this investigation, we give several constructions, both for specific families of graphs, and for graphs in general.
Resumo:
In this paper we completely solve the problem of finding a maximum packing of any complete multipartite graph with edge-disjoint 4-cycles, and the minimum leaves are explicitly given.
Resumo:
A 4-cycle in a tripartite graph with vertex partition {V-1, V-2, V-3} is said to be gregarious if it has at least one vertex in each V-i, 1 less than or equal to i less than or equal to 3. In this paper, necessary and sufficient conditions are given for the existence of an edge-disjoint decomposition of any complete tripartite graph into gregarious 4-cycles.
Resumo:
This article describes a method to turn astronomical imaging into a random number generator by using the positions of incident cosmic rays and hot pixels to generate bit streams. We subject the resultant bit streams to a battery of standard benchmark statistical tests for randomness and show that these bit streams are statistically the same as a perfect random bit stream. Strategies for improving and building upon this method are outlined.
Resumo:
A graph H is said to divide a graph G if there exists a set S of subgraphs of G, all isomorphic to H, such that the edge set of G is partitioned by the edge sets of the subgraphs in S. Thus, a graph G is a common multiple of two graphs if each of the two graphs divides G.
Resumo:
Genetic markers that distinguish fungal genotypes are important tools for genetic analysis of heterokaryosis and parasexual recombination in fungi. Random amplified polymorphic DNA (RAPD) markers that distinguish two races of biotype B of Colletotrichum gloeosporioides infecting the legume Stylosanthes guianensis were sought. Eighty-five arbitrary oligonucleotide primers were used to generate 895 RAPD bands but only two bands were found to be specifically amplified from DNA of the race 3 isolate. These two RAPD bands were used as DNA probes and hybridised only to DNA of the race 3 isolate. Both RAPD bands hybridised to a dispensable 1.2 Mb chromosome of the race 3 isolate. No other genotype-specific chromosomes or DNA sequences were identified in either the race 2 or race 3 isolates. The RAPD markers hybridised to a 2 Mb chromosome in all races of the genetically distinct biotype A pathogen which infects other species of Stylosanthes as well as S. guianensis. The experiments indicate that RAPD analysis is a potentially useful tool for obtaining genotype-and chromosome-specific DNA probes in closely related isolates of one biotype of this fungal pathogen.
Resumo:
Necessary and sufficient conditions are given for the edge-disjoint decomposition of a complete tripartite graph K-r,K-s,K-t into exactly alpha 3-cycles and beta 4-cycles. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
In the present work, various theories predicting the critical diameter for the absence of capillary condensation and hysteresis are applied to experimental adsorption isotherms of vapors on regular mesoporous materials. Among the various theories studied, the tensile strength approximation proposed by the authors was found to be the most successful. Reversibility of nitrogen adsorption at 77.4 K was studied on pure MCM-41 of various pore sizes, as well as mixtures of pure MCM-41 samples in a 1:1 ratio. The results of PSD and hysteresis on MCM-41 mixtures are close to that expected from studies of the pure materials. The estimates of hysteresis critical temperature and diameter of MCM-41, HMS, FSM and KIT materials are also provided.