939 resultados para QUANTUM-CLASSICAL DYNAMICS


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Computer simulations have become an important tool in physics. Especially systems in the solid state have been investigated extensively with the help of modern computational methods. This thesis focuses on the simulation of hydrogen-bonded systems, using quantum chemical methods combined with molecular dynamics (MD) simulations. MD simulations are carried out for investigating the energetics and structure of a system under conditions that include physical parameters such as temperature and pressure. Ab initio quantum chemical methods have proven to be capable of predicting spectroscopic quantities. The combination of these two features still represents a methodological challenge. Furthermore, conventional MD simulations consider the nuclei as classical particles. Not only motional effects, but also the quantum nature of the nuclei are expected to influence the properties of a molecular system. This work aims at a more realistic description of properties that are accessible via NMR experiments. With the help of the path integral formalism the quantum nature of the nuclei has been incorporated and its influence on the NMR parameters explored. The effect on both the NMR chemical shift and the Nuclear Quadrupole Coupling Constants (NQCC) is presented for intra- and intermolecular hydrogen bonds. The second part of this thesis presents the computation of electric field gradients within the Gaussian and Augmented Plane Waves (GAPW) framework, that allows for all-electron calculations in periodic systems. This recent development improves the accuracy of many calculations compared to the pseudopotential approximation, which treats the core electrons as part of an effective potential. In combination with MD simulations of water, the NMR longitudinal relaxation times for 17O and 2H have been obtained. The results show a considerable agreement with the experiment. Finally, an implementation of the calculation of the stress tensor into the quantum chemical program suite CP2K is presented. This enables MD simulations under constant pressure conditions, which is demonstrated with a series of liquid water simulations, that sheds light on the influence of the exchange-correlation functional used on the density of the simulated liquid.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this work, we investigate the quantum dynamics of a model for two singlemode Bose-Einstein condensates which are coupled via Josephson tunnelling. Using direct numerical diagonalization of the Hamiltonian, we compute the time evolution of the expectation value for the relative particle number across a wide range of couplings. Our analysis shows that the system exhibits rich and complex behaviours varying between harmonic and non-harmonic oscillations, particularly around the threshold coupling between the delocalized and selftrapping phases. We show that these behaviours are dependent on both the initial state of the system and regime of the coupling. In addition, a study of the dynamics for the variance of the relative particle number expectation and the entanglement for different initial states is presented in detail.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We show that divisibility of qubit quantum processes implies temporal Tsirelson's bound. We also prove that the classical bound of the temporal Bell's inequality holds for dynamics that can be described by entanglement-breaking channels---a more general class of dynamics than that allowed by classical physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Key establishment is a crucial primitive for building secure channels in a multi-party setting. Without quantum mechanics, key establishment can only be done under the assumption that some computational problem is hard. Since digital communication can be easily eavesdropped and recorded, it is important to consider the secrecy of information anticipating future algorithmic and computational discoveries which could break the secrecy of past keys, violating the secrecy of the confidential channel. Quantum key distribution (QKD) can be used generate secret keys that are secure against any future algorithmic or computational improvements. QKD protocols still require authentication of classical communication, although existing security proofs of QKD typically assume idealized authentication. It is generally considered folklore that QKD when used with computationally secure authentication is still secure against an unbounded adversary, provided the adversary did not break the authentication during the run of the protocol. We describe a security model for quantum key distribution extending classical authenticated key exchange (AKE) security models. Using our model, we characterize the long-term security of the BB84 QKD protocol with computationally secure authentication against an eventually unbounded adversary. By basing our model on traditional AKE models, we can more readily compare the relative merits of various forms of QKD and existing classical AKE protocols. This comparison illustrates in which types of adversarial environments different quantum and classical key agreement protocols can be secure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is generally known that the orbital diamagnetism of a classical system of charged particles in thermal equilibrium is identically zero —the Bohr-van Leeuwen theorem. Physically, this null result derives from the exact cancellation of the orbital diamagnetic moment associated with the complete cyclotron orbits of the charged particles by the paramagnetic moment subtended by the incomplete orbits skipping the boundary in the opposite sense. Motivated by this crucial but subtle role of the boundary, we have simulated here the case of a finite but unbounded system, namely that of a charged particle moving on the surface of a sphere in the presence of an externally applied uniform magnetic field. Following a real space-time approach based on the classical Langevin equation, we have computed the orbital magnetic moment that now indeed turns out to be non-zero and has the diamagnetic sign. To the best of our knowledge, this is the first report of the possibility of finite classical diamagnetism in principle, and it is due to the avoided cancellation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We demonstrate the phenomenon stated in the title, using for illustration a two-dimensional scalar-field model with a triple-well potential {fx837-1}. At the classical level, this system supports static topological solitons with finite energy. Upon quantisation, however, these solitons develop infinite energy, which cannot be renormalised away. Thus this quantised model has no soliton sector, even though classical solitons exist. Finally when the model is extended supersymmetrically by adding a Majorana field, finiteness of the soliton energy is recovered.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider a suspended elastic rod under longitudinal compression. The compression can be used to adjust potential energy for transverse displacements from the harmonic to the double well regime. The two minima in potential energy curve describe two possible buckled states. Using transition state theory (TST) we have calculated the rate of conversion from one state to other. If the strain epsilon = 4 epsilon c the simple TST rate diverges. We suggest a method to correct this divergence for quantum calculations. We also find that zero point energy contributions can be quite large so that single mode calculations can lead to large errors in the rate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The coherent quantum evolution of a one-dimensional many-particle system after slowly sweeping the Hamiltonian through a critical point is studied using a generalized quantum Ising model containing both integrable and nonintegrable regimes. It is known from previous work that universal power laws of the sweep rate appear in such quantities as the mean number of excitations created by the sweep. Several other phenomena are found that are not reflected by such averages: there are two different scaling behaviors of the entanglement entropy and a relaxation that is power law in time rather than exponential. The final state of evolution after the quench is not characterized by any effective temperature, and the Loschmidt echo converges algebraically for long times, with cusplike singularities in the integrable case that are dynamically broadened by nonintegrable perturbations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we present and compare the results obtained from semi-classical and quantum mechanical simulation for a Double Gate MOSFET structure to analyze the electrostatics and carrier dynamics of this device. The geometries like gate length, body, thickness of this device have been chosen according to the ITRS specification for the different technology nodes. We have shown the extent of deviation between the semi-classical and quantum mechanical results and hence the need of quantum simulations for the promising nanoscale devices in the future technology nodes predicted in ITRS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider a double dot system of equivalent, capacitively coupled semiconducting quantum dots, each coupled to its own lead, in a regime where there are two electrons on the double dot. Employing the numerical renormalization group, we focus here on single-particle dynamics and the zero-bias conductance, considering in particular the rich range of behaviour arising as the interdot coupling is progressively increased through the strong-coupling (SC) phase, from the spin-Kondo regime, across the SU(4) point to the charge-Kondo regime, and then towards and through the quantum phase transition to a charge-ordered ( CO) phase. We first consider the two-self-energy description required to describe the broken symmetry CO phase, and implications thereof for the non-Fermi liquid nature of this phase. Numerical results for single-particle dynamics on all frequency scales are then considered, with particular emphasis on universality and scaling of low-energy dynamics throughout the SC phase. The role of symmetry breaking perturbations is also briefly discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A microscopic theory of equilibrium solvation and solvation dynamics of a classical, polar, solute molecule in dipolar solvent is presented. Density functional theory is used to explicitly calculate the polarization structure around a solvated ion. The calculated solvent polarization structure is different from the continuum model prediction in several respects. The value of the polarization at the surface of the ion is less than the continuum value. The solvent polarization also exhibits small oscillations in space near the ion. We show that, under certain approximations, our linear equilibrium theory reduces to the nonlocal electrostatic theory, with the dielectric function (c(k)) of the liquid now wave vector (k) dependent. It is further shown that the nonlocal electrostatic estimate of solvation energy, with a microscopic c(k), is close to the estimate of linearized equilibrium theories of polar liquids. The study of solvation dynamics is based on a generalized Smoluchowski equation with a mean-field force term to take into account the effects of intermolecular interactions. This study incorporates the local distortion of the solvent structure near the ion and also the effects of the translational modes of the solvent molecules.The latter contribution, if significant, can considerably accelerate the relaxation of solvent polarization and can even give rise to a long time decay that agrees with the continuum model prediction. The significance of these results is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vibrational phase relaxation near gas-liquid and liquid-solid phase coexistence has been studied by molecular dynamics simulations of N-N stretch in N-2. Experimentally observed pronounced insensitivity of phase relaxation from the triple point to beyond the boiling point is found to originate from a competition between density relaxation and resonant-energy transfer terms. The sharp rise in relaxation rate near the critical point (CP) can be attributed at least partly to the sharp, rise in vibration-rotation coupling contribution. Substantial subquadratic quantum number dependence of overtone dephasing rate is found near the CP and in supercritical fluids. [S0031-9007 (99)09318-7].