975 resultados para Pseudomonas aeruginos
Resumo:
Integrative and conjugative elements (ICE) are in some ways parasitic mobile DNA that propagate vertically through replication with the bacterial host chromosome but at low frequencies can excise and invade new recipient cells through conjugation and reintegration (horizontal propagation). The factors that contribute to successful horizontal propagation are not very well understood. Here, we study the influence of host cell life history on the initiation of transfer of a model ICE named ICEclc in bacteria of the genus Pseudomonas. We use time-lapse microscopy of growing and stationary-phase microcolonies of ICEclc bearing cells in combination with physiological staining and gene reporter analysis in stationary-phase suspended cells. We provide evidence that cell age and cell lineage are unlikely to play a role in the decision to initiate the ICEclc transfer program. In contrast, cells activating ICEclc show more often increased levels of reactive oxygen species and membrane damage than nonactivating cells, suggesting that some form of biochemical damage may make cells more prone to ICEclc induction. Finally, we find that ICEclc active cells appear spatially at random in a microcolony, which may have been a selective advantage for maximizing ICEclc horizontal transmission to new recipient species.
Resumo:
Integrons play a role in horizontal acquisition and expression of genes, as well as gene reservoir, contributing for the resistance phenotype, particularly relevant to bacteria of clinical importance. We aimed to determine the composition and the organization of the class 1 integron variable region present in Pseudomonas aeruginosa clinical isolates from Brazil. Strains carrying class 1 integrons were resistant to the majority of antibiotics tested, except to imipenem and ceftazidime. Sequence analysis of the integron variable region revealed the presence of the blaCARB-4 gene into two distinct cassette arrays: aacA4-dhfrXVb-blaCARB-4 and aadB-aacA4-blaCARB-4 . dhfrXVb gene cassette, which is rare in Brazil and in P. aeruginosa species, was found in one isolate. PFGE analysis showed the spread of blaCARB-4 among P. aeruginosa clones. The occurrence of blaCARB-4 and dhfrXVb in Brazil may contribute for developing resistance to clinically important antibiotics, and shows a diversified scenarium of these elements occurring in Amazon clinical settings, where no study about integron dinamycs was performed to date.
Resumo:
In Pseudomonas aeruginosa, the antibiotic dihydroaeruginoate (Dha) and the siderophore pyochelin are produced from salicylate and cysteine by a thiotemplate mechanism involving the peptide synthetases PchE and PchF. A thioesterase encoded by the pchC gene was found to be necessary for maximal production of both Dha and pyochelin, but it was not required for Dha release from PchE and could not replace the thioesterase function specified by the C-terminal domain of PchF. In vitro, 2-aminobutyrate, a cysteine analog, was adenylated by purified PchE and PchF proteins. In vivo, this analog strongly interfered with Dha and pyochelin formation in a pchC deletion mutant but affected production of these metabolites only slightly in the wild type. Exogenously supplied cysteine overcame the negative effect of a pchC mutation to a large extent, whereas addition of salicylate did not. These data are in agreement with a role for PchC as an editing enzyme that removes wrongly charged molecules from the peptidyl carrier protein domains of PchE and PchF.
Resumo:
In Pseudomonas fluorescens CHA0, mutation of the GacA-controlled aprA gene (encoding the major extracellular protease) or the gacA regulatory gene resulted in reduced biocontrol activity against the root-knot nematode Meloidogyne incognita during tomato and soybean infection. Culture supernatants of strain CHA0 inhibited egg hatching and induced mortality of M. incognita juveniles more strongly than did supernatants of aprA and gacA mutants, suggesting that AprA protease contributes to biocontrol.
Resumo:
Information for parents on preventing infections caused by Pseudomonas
Resumo:
Information leaflet for parents and carers on screening patients for Pseudomonas.
Resumo:
Fact sheet on Pseudomonas, including:What is Pseudomonas?What infections does it cause?Who is susceptible to pseudomonas infection?How will I know if I have pseudomonas infection?How can Pseudomonas be prevented from spreading?How can I protect myself from Pseudomonas?How is Pseudomonas infection treated?
Resumo:
Information for parents on preventing infections caused by Pseudomonas
Resumo:
Genomic islands, large potentially mobile regions of bacterial chromosomes, are a major contributor to bacteria evolution. Here, we investigated the fitness cost and phenotypic differences between the bacterium Pseudomonas aeruginosa PAO1 and a derivative carrying one integrated copy of the clc element, a 103-kb genomic island [and integrative and conjugative element (ICE)] originating in Pseudomonas sp. strain B13 and a close relative of genomic islands found in clinical and environmental isolates of P. aeruginosa. By using a combination of whole genome transcriptome profiling, phenotypic arrays, competition experiments, and biofilm formation studies, only few differences became apparent, such as reduced biofilm growth and fourfold stationary phase repression of genes involved in acetoin metabolism in PAO1 containing the clc element. In contrast, PAO1 carrying the clc element acquired the capacity to grow on 3-chlorobenzoate and 2-aminophenol as sole carbon and energy substrates. No fitness loss >1% was detectable in competition experiments between PAO1 and PAO1 carrying the clc element. The genes from the clc element were not silent in PAO1, and excision was observed, although transfer of clc from PAO1 to other recipient bacteria was reduced by two orders of magnitude. Our results indicate that newly acquired mobile DNA not necessarily invoke an important fitness cost on their host. Absence of immediate detriment to the host may have contributed to the wide distribution of genomic islands like clc in bacterial genomes
Resumo:
Pseudomonas fluorescens strain CHA0 is able to protect plants against a variety of pathogens, notably by producing the two antimicrobial compounds 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT). The regulation of the expression of these compounds is affected by many biotic factors, such as fungal pathogens, rhizosphere bacteria as well as plant species. Therefore, the influence of some plant phenolic compounds on the expression of DAPG and PLT biosynthetic genes has been tested using GFP-based reporter, monitored by standard fluometry and flow cytometry. In situ experiments were also performed with cucumber plants. We found that several plant metabolites such as IAA and umbelliferone are able to modify significantly the expression of DAPG and PLT. The use of flow cytometry with autofluorescents proteins seems to be a promising method to study rhizobacteria-plant interactions.
Resumo:
Pyochelin (PCH) is a siderophore produced and secreted by Pseudomonas aeruginosa for iron capture. Using (55) Fe uptake and binding assays, we showed that PCH-Fe uptake in P. aeruginosa involves, in addition to the highly studied outer membrane transporter FptA, the inner membrane permease FptX, which recognizes PCH-(55) Fe with an affinity of 0.6 ± 0.2 nM and transports the ferri-siderophore complex from the periplasm into the cytoplasm: fptX deletion inhibited (55) Fe accumulation in the bacterial cytoplasm. Chromosomal replacement was used to generate P. aeruginosa strains producing fluorescent fusions with FptX, PchR (an AraC regulator), PchA (the first enzyme involved in the PCH biosynthesis) and PchE (a non-ribosomic peptide-synthetase involved in a further step). Fluorescence imaging and cellular fractionation showed a uniform repartition of FptX in the inner membrane. PchA and PchE were found in the cytoplasm, associated to the inner membrane all over the bacteria and also concentrated at the bacterial poles. PchE clustering at the bacterial poles was dependent on PchA expression, but on the opposite PchA clustering and membrane association was PchE-independent. PchA and PchE cellular organization suggests the existence of a siderosome for PCH biosynthesis as previously proposed for pyoverdine biosynthesis (another siderophore produced by P. aeruginosa).
Resumo:
Bacteria isolated from marine sponges found off the coast of Rio de Janeiro, Brazil, were screened for the production of antimicrobial substances. We report a new Pseudomonas putida strain (designated P. putida Mm3) isolated from the sponge Mycale microsigmatosa that produces a powerful antimicrobial substance active against multidrug-resistant bacteria. P. putida Mm3 was identified on the basis of 16S rRNA gene sequencing and phenotypic tests. Molecular typing for Mm3 was performed by RAPD-PCR and comparison of the results to other Pseudomonas strains. Our results contribute to the search for new antimicrobial agents, an important strategy for developing alternative therapies to treat infections caused by multidrug-resistant bacteria.
Resumo:
Pseudomonas fluorescens strain CHA0 is an effective biocontrol agent of various soilborne pathogens. It controls damping-off or root rot caused byPythium ultimum on cucumber, wheat and cress. Strain CHA0 synthesizes several antibiotic metabolites such as hydrogen cyanide, 2,4-diacetylphloroglucinol, and pyoluteorin. The role of pyoluteorin in the suppression of damping-off was investigated. Two Tn5 mutants (CHA660 and CHA661) of strain CHA0 were isolated which had lost the capacity to produce pyoluteorin but still produced 2,4-diacteylphloroglucinol and HCN. These mutants still inhibitedP. ultimum on malt agar (which favours the production of 2,4-diacetylphloroglucinol) but had partially lost the ability to inhibit this pathogen on King's B agar (which favours the production of pyoluteorin). The two pyoluteorin-negative mutants showed a reduced capacity to suppress damping-off of cress caused byP. ultimum but were as effective in the protection of cucumber against this pathogen as the wild-type strain. These results indicate that, depending on the plant, pyoluteorin production plays a role in the suppression of damping-off by strain CHA0 without being a major mechanism in disease suppression. We suggest that the contribution of pyoluteorin to the biocontrol activity of strain CHA0 is determined by the quantity of this antibiotic produced in the rhizosphere, which might depend on the root exudates of the host plant.
Resumo:
Azithromycin at clinically relevant doses does not inhibit planktonic growth of the opportunistic pathogen Pseudomonas aeruginosa but causes markedly reduced formation of biofilms and quorum-sensing-regulated extracellular virulence factors. In the Gac/Rsm signal transduction pathway, which acts upstream of the quorum-sensing machinery in P. aeruginosa, the GacA-dependent untranslated small RNAs RsmY and RsmZ are key regulatory elements. As azithromycin treatment and mutational inactivation of gacA have strikingly similar phenotypic consequences, the effect of azithromycin on rsmY and rsmZ expression was investigated. In planktonically growing cells, the antibiotic strongly inhibited the expression of both small RNA genes but did not affect the expression of the housekeeping gene proC. The azithromycin treatment resulted in reduced expression of gacA and rsmA, which are known positive regulators of rsmY and rsmZ, and of the PA0588-PA0584 gene cluster, which was discovered as a novel positive regulatory element involved in rsmY and rsmZ expression. Deletion of this cluster resulted in diminished ability of P. aeruginosa to produce pyocyanin and to swarm. The results of this study indicate that azithromycin inhibits rsmY and rsmZ transcription indirectly by lowering the expression of positive regulators of these small RNA genes.
Resumo:
In Pseudomonas aeruginosa PAO1, the expression of several virulence factors such as elastase, rhamnolipids, and hydrogen cyanide depends on quorum-sensing regulation, which involves the lasRI and rhlRI systems controlled by N-(3-oxododecanoyl)-L-homoserine lactone and N-butyryl-L-homoserine lactone, respectively, as signal molecules. In rpoN mutants lacking the transcription factor sigma(54), the expression of the lasR and lasI genes was elevated at low cell densities, whereas expression of the rhlR and rhlI genes was markedly enhanced throughout growth by comparison with the wild type and the complemented mutant strains. As a consequence, the rpoN mutants had elevated levels of both signal molecules and overexpressed the biosynthetic genes for elastase, rhamnolipids, and hydrogen cyanide. The quorum-sensing regulatory protein QscR was not involved in the negative control exerted by RpoN. By contrast, in an rpoN mutant, the expression of the gacA global regulatory gene was significantly increased during the entire growth cycle, whereas another global regulatory gene, vfr, was downregulated at high cell densities. In conclusion, it appears that GacA levels play an important role, probably indirectly, in the RpoN-dependent modulation of the quorum-sensing machinery of P. aeruginosa.