923 resultados para Pseudomonas Putida
Resumo:
Metabolism of linalyl acetate by Pseudomonas incognita isolated by enrichment culture on the acyclic monoterpene alcohol linalool was studied. Biodegradation of linalyl acetate by this strain resulted in the formation of linalool, linalool- 8-carboxylic acid, oleuropeic acid, and A5-4-acetoxy-4-methyl hexenoic acid. Cells adapted to linalyl acetate metabolized linalyl acetate-8-aldehyde to linalool- 8-carboxylic acid, linalyl acetate-8-carboxylic acid, A5-4-acetoxy-4-methyl hexenoic acid, and geraniol-8-carboxylic acid. Resting cell suspensions previously grown with linalyl acetate oxidized linalyl acetate-8-aldehyde to linalyl acetate-8- carboxylic acid, A5-4-acetoxy-4-methyl hexenoic acid, and pyruvic acid. The crude cell-free extract (10,000 g of supernatant), obtained from the sonicate of linalyl acetate-grown cells, was shown to contain enzyme systems responsible for the formation of linalyl acetate-8-carboxylic acid and linalool-8-carboxylic acid from linalyl acetate. The same supernatant contained NAD-linked alcohol and aldehyde dehydrogenases involved in the formation of linalyl acetate-8-aldehyde and linalyl acetate-8-carboxylic acid, respectively. On the basis of various metabolites isolated from the culture medium, resting cell experiments, growth and manometric studies carried out with the isolated metabolites as well as related synthetic analogs, and the preliminary enzymatic studies performed with the cellfree extract, a probable pathway for the microbial degradation of linalyl acetate with the acetoxy group intact is suggested.
Resumo:
A copper-binding complex formed in the exopolysaccharide fraction of Image was isolated and characterized using a variety of techniques. By comparison with model Cu(II) complexes of uronic acids, it is shown that the Image forms a square-planer, cupric complex similar to cupric glucuronates.
Resumo:
Details of the metabolism of alpha-terpineol by Pseudomonas incognita are presented. Degradation of alpha-terpineol by this organism resulted in the formation of a number of acidic and neutral metabolites. Among the acidic metabolites, beta-isopropyl pimelic acid, 1-hydroxy-4-isopropenyl-cyclohexane-1-carboxylic acid, 8-hydroxycumic acid, oleuropeic acid, cumic acid, and p-isopropenyl benzoic acid have been identified. Neutral metabolites identified were limonene, p-cymene-8-ol, 2-hydroxycineole, and uroterpenol. Cell-free extracts prepared from alpha-terpineol adapted cells were shown to convert alpha-terpineol, p-cymene-8-ol, and limonene to oleuropeic acid, 8-hydroxycumic acid, and perillic acid, respectively, in the presence of NADH. The same cell-free extract contained NAD+ -specific dehydrogenase(s) which converted oleuropyl alcohol, p-cymene-7,8-diol, and perillyl alcohol to their corresponding 7-carboxy acids. On the basis of various metabolites isolated from the culture medium, together with the supporting evidence obtained from enzymatic and growth studies, it appears that P. incognita degrades alpha-terpineol by at least three different routes. While one of the pathways seems to operate via oleuropeic acid, a second may be initiated through the aromatization of alpha-terpineol. The third pathway may involve the formation of limonene from alpha-terpineol and its further metabolism.
Resumo:
The ability of Pseudomonas incognita to metabolize some structurally modified acyclic monoterpenes was tested. The 6,7 double bond was found essential for these compounds to serve as a substrate for this organism, whereas the same was not true with the 1,2 double bond. Metabolism of dihydrolinalyl acetate by this strain yielded dihydrolinalool, dihydrolinalool-8-carboxylic acid, dihydrolinalyl acetate-8-carboxylic acid, and 4-acetoxy-4-methyl hexanoic acid. A cell-free extract prepared from dihydrolinalyl acetate grown cells transformed dihydrolinalyl acetate into dihydrolinalool and dihydrolinalool-8-carboxylic acid. Based on the identification of various metabolites isolated from the culture medium, and on growth and manometric studies carried out with the isolated metabolites as well as with related synthetic analogs, probable pathways for the biodegradation of dihydrolinalyl acetate are presented.
Resumo:
Analysis of 35S labled nucleosides prepared from tRNA of Pseudomonas aeruginosa by phosphocellulose column chromatography, thin layer chromatography and Sephadex LH-20 column chromatography revealed the presence of 2-methylthioribosylzeatin in it. 2iPA, 6-(3-methyl-2-butenylamino)-9-β-D-ribofuranosyl purine; ms-2iPA, 6-(3-methyl-2-butenylamino)-2-methylthio-9-β-D-ribofuranosylpurine; ribosyl-cis-zeatin, 6-(4-hydroxy-3-methyl-cis-2-butenylamino)-9-β-D-ribofuranosylpurine; ribosyl-trans-zeatin, 6-(4-hydroxy-3-methyl-trans-2-butenylamino)-9-β-D-ribofuranosylpurine; ms-ribosylzeatin, 6-(4-hydroxy-3-methyl-2-butenylamino)-2-methylthio-9-β-D-ribofuranosylpurine; s4U2, 4-thiouridine; s2U*, 5-methylaminomethyl-2-thiouridine; s2C, 2-thiocytidine; TLC — thin layer chromatography.
Resumo:
35S-Labeled thionucleosides prepared from Escherichia coli and Pseudomonas aeruginosa tRNAs were chromatographed separately on a phosphocellulose column with a linear salt gradient of 0.005–0.1 M ammonium formate (pH 3.9). The thionucleosides of E. coli tRNA were quantitatively separated into four peaks which were identified using authentic samples as 4-thiouridine (78 %), 2-methylthio-N6-isopentenyladenosine (8 %), 2-thiocytidine (2.5 %) and 5-methylaminomethyl-2-thiouridine (11.5 %). In the case of P. aeruginosa tRNA four radioactive thionucleoside peaks were also observed. One major difference was the almost complete absence of 2-methylthio-N6-isopentenyladenosine and the presence of a new peak of radioactivity in the nucleosides of P. aeruginosa. The relative proportions of the various thionucleosides were found to be different in E. coli and P. aeruginosa tRNAs.
Resumo:
Analysis of 35S labled nucleosides prepared from tRNA of Pseudomonas aeruginosa by phosphocellulose column chromatography, thin layer chromatography and Sephadex LH-20 column chromatography revealed the presence of 2-methylthioribosylzeatin in it. 2iPA, 6-(3-methyl-2-butenylamino)-9-β-D-ribofuranosyl purine; ms-2iPA, 6-(3-methyl-2-butenylamino)-2-methylthio-9-β-D-ribofuranosylpurine; ribosyl-cis-zeatin, 6-(4-hydroxy-3-methyl-cis-2-butenylamino)-9-β-D-ribofuranosylpurine; ribosyl-trans-zeatin, 6-(4-hydroxy-3-methyl-trans-2-butenylamino)-9-β-D-ribofuranosylpurine; ms-ribosylzeatin, 6-(4-hydroxy-3-methyl-2-butenylamino)-2-methylthio-9-β-D-ribofuranosylpurine; s4U2, 4-thiouridine; s2U*, 5-methylaminomethyl-2-thiouridine; s2C, 2-thiocytidine; TLC — thin layer chromatography.
Resumo:
Pseudomonas aeruginosa tRNA was treated with iodine, CNBr and N-ethylmaleimide,three thionucleotide-specific reagents. Reaction with iodine resulted in extensive loss of acceptor activity by lysine tRNA, glutamic acid tRNA, glutamine tRNA, serine tRNA and tyrosine tRNA. CNBr treatment resulted in high loss of acceptor ability by lysine tRNA, glutamic acid tRNA and glutamine tRNA. Only the acceptor ability of tyrosine tRNA was inhibited up to 66% by N-ethylmaleimide treatment, a reagent specific for 4-thiouridine. By the combined use of benzoylated DEAE-cellulose and DEAESephadex columns, lysine tRNA of Ps. aeruginosa was resolved into two isoaccepting species, a major, tRNAL'y and a minor, tRNA'Ys. Co-chromatography of 14C-labelled tRNALYS and 3H-labelled tRNALy, on benzoylated DEAE-cellulose at pH4.5 gave two distinct, non-superimposable profiles for the two activity peaks, suggesting that they were separate species. The acceptor activity of these two species was inhibited by about 95% by iodine and CNBr. Both the species showed equal response to codons AAA and AAG and also for poly(A) and poly(A1,Gl) suggesting that the anticodon of these species was UUU. Chemical modification of these two species by iodine did not inhibit the coding response. The two species of lysine of Ps. aeruginosa are truly redundant in that they are indistinguishable either by chemical modification or by their coding response.
Resumo:
An inducible membrane-bound l-4-hydroxymandelate oxidase (decarboxylating) from Pseudomonas convexa has been solubilized and partially purified. It catalyzes the conversion of l-4-hydroxymandelic acid to 4-hydroxybenzaldehyde in a single step with the stoichiometric consumption of O2 and liberation of CO2. The enzyme is optimally active at pH 6.6 and at 55 oC. It requires FAD and Mn2+ for its activity. The membrane-bound enzyme is more stable than the solubilized and purified enzyme. After solubilization it gradually loses its activity when kept at 5 oC which can be fully reactivated by freezing and thawing. The Km values for DL-4-hydroxymandelate and FAD are 0.44 mM and 0.038 mM respectively. The enzyme is highly specific for DL-4-hydroxymandelic acid. DL-3,4-Dihydroxymandelic acid competitively inhibited the enzyme reaction. From the Dixon plot the Ki for DL-3,4-dihydroxymandelic acid was calculated to be 1.8 × 10−4 M. The enzyme is completely inactivated by thiol compounds and not affected by thiol inhibitors. The enzyme is also inhibited by denaturing agents, heavy metal ions and by chelating agents.
Resumo:
An inducible Image -mandelate-4-hydroxylase has been partially purified from crude extracts of Pseudomonas convexa. This enzyme catalyzed the hydroxylation of Image -mandelic acid to 4-hydroxymandelic acid. It required tetrahydropteridine, NADPH, Fe2+, and O2 for its activity. The approximate molecular weight of the enzyme was assessed as 91,000 by gel filtration on Sephadex G-150. The enzyme was optimally active at pH 5.4 and 38 °C. A classical Michaelis-Menten kinetic pattern was observed with Image -mandelate, NADPH, and ferrous sulfate and Km values for these substrates were found to be 1 × 10−4, 1.9 × 10−4, and 4.7 × 10−5 Image , respectively. The enzyme is very specific for Image -mandelate as substrate. Thiol inhibitors inhibited the enzyme reaction, indicating that the sulfhydryl groups may be essential for the enzyme action. Treatment of the partially purified enzyme with denaturing agents inactivated the enzyme.
Resumo:
Many Gram-negative bacteria pathogenic to plants and animals possess type III secretion systems that are used to cause disease. Effector proteins are injected into host cells using the type III secretion machineries. Despite vigorous studies, the nature of the secretion signal for type III secreted proteins still remains elusive. Both mRNA and proteinaceous signals have been proposed. Findings on coupling of translation to secretion by the type III secretion systems are also still contradictory. This study dealt with the secretion signal of HrpA from Pseudomonas syringae pathovar tomato. HrpA is the major component of the type III secretion system-associated Hrp pilus and a substrate for the type III secretion systems. The secretion signal was shown to reside in the first 15 codons or amino acids, a location typical for type III secretion signals. Translation of HrpA in the absence of a functional type III secretion system was established, but it does not exclude the possibility of coupling of translation to secretion when the secretion apparatus is present. The hrpA transcripts from various unrelated plant pathogenic bacteria were shown to be extremely stable. The biological relevance of this observation is unknown, but possible explanations include the high prevalence of HrpA protein, an mRNA secretion signal or timing of secretion. The hrpA mRNAs are stable over a wide range of temperatures, in the absence of translating ribosomes and even in the heterologous host Escherichia coli. The untranslated regions (UTRs) of hrpA transcripts from at least 20 pathovars of Pseudomonas syringae are highly homologous, whilst their coding regions exhibit low similarity. The stable nature of hrpA messenger RNAs is likely to be due to the folding of their 5 and 3 UTRs. In silico the UTRs seem to form stem-loop structures, the hairpin structures in the 3 UTRs being rich in guanidine and cytosine residues. The stable nature of the hrpA transcript redirected the studies to the stabilization of heterologous transcripts and to the use of stable messenger RNAs in recombinant protein production. Fragments of the hrpA transcript can be used to confer stability on heterologous transcripts from several sources of bacterial and eukaryotic origin, and to elevate the levels of production of the corresponding recombinant proteins several folds. hrpA transcript stabilizing elements can be used for improving the yields of recombinant proteins even in Escherichia coli, one of the most commonly used industrial protein production hosts.
Resumo:
The type III secretion system (T3SS) is an essential requirement for the virulence of many Gram-negative bacteria which infect plants, animals and men. Pathogens use the T3SS to deliver effector proteins from the bacterial cytoplasm to the eukaryotic host cells, where the effectors subvert host defenses. The best candidates for directing effector protein traffic are the bacterial type III-associated appendages, called needles or pili. In plant pathogenic bacteria, the best characterized example of a T3SS-associated appendage is the HrpA pilus of the plant pathogen Pseudomonas syringae pv. tomato DC3000. The components of the T3SS in plant pathogens are encoded by a cluster of hrp (hypersensitive reaction and pathogenicity) genes. Two major classes of T3SS-secreted proteins are: harpin proteins such as HrpZ which are exported into extracellular space, and avirulence (Avr) proteins such as AvrPto which are translocated directly to the plant cytoplasm. This study deals with the structural and functional characterization of the T3SS-associated HrpA pilus and the T3SS-secreted harpins. By insertional mutagenesis analysis of HrpA, we located the optimal epitope insertion site in the amino-terminus of HrpA, and revealed the potential application of the HrpA pilus as a carrier of antigenic determinants for vaccination. By pulse-expression of proteins combined with immuno-electron microscopy, we discovered the Hrp pilus assembly strategy as addition of HrpA subunits to the distal end of the growing pilus, and we showed for the first time that secretion of HrpZ occurs at the tip of the pilus. The pilus thus functions as a conduit delivering proteins to the extracellular milieu. By using phage-display and scanning-insertion mutagenesis methods we identified a conserved HrpZ-binding peptide and localized the peptide-binding site to the central domain of HrpZ. We also found that the HrpZ specifically interacts with a host bean protein. Taken together, the current results provide deeper insight into the molecular mechanism of T3SS-associated pilus assembly and effector protein translocation, which will be helpful for further studies on the pathogenic mechanisms of Gram-negative bacteria and for developing new strategies to prevent bacterial infection.
Resumo:
A soluble fraction of catalyzed the hydroxylation of mandelic acid to -hydroxymandelic acid. The enzyme had a pH optimum of 5.4 and showed an absolute requirement for Fe2+, tetrahydropteridine, NADPH. -Hydroxymandelate, the product of the enzyme reaction was identified by paper chromatography, thin layer chromatography, UV and IR-spectra