878 resultados para Protein and peptide drugs
Resumo:
Aging of the human retina is characterized by progressive pathology, which can lead to vision loss. This progression is believed to involve reactive metabolic intermediates reacting with constituents of Bruch's membrane, significantly altering its physiochemical nature and function. We aimed to replace a myriad of techniques following these changes with one, Raman spectroscopy. We used multiplexed Raman spectroscopy to analyze the age-related changes in 7 proteins, 3 lipids, and 8 advanced glycation/lipoxidation endproducts (AGEs/ALEs) in 63 postmortem human donors. We provided an important database for Raman spectra from a broad range of AGEs and ALEs, each with a characteristic fingerprint. Many of these adducts were shown for the first time in human Bruch's membrane and are significantly associated with aging. The study also introduced the previously unreported up-regulation of heme during aging of Bruch's membrane, which is associated with AGE/ALE formation. Selection of donors ranged from ages 32 to 92 yr. We demonstrated that Raman spectroscopy can identify and quantify age-related changes in a single nondestructive measurement, with potential to measure age-related changes in vivo. We present the first directly recorded evidence of the key role of heme in AGE/ALE formation.
Resumo:
Background: Malignant pleural mesothelioma (MPM) is an uncommon disease whose incidence is increasing worldwide over the past 30 years. Surgical resection and radiotherapy represent the standard treatment in patient with resectable MPM. Chemotherapy is also necessary to reduce incidence of distant metastases, but the optimal setting of treatment (neoadjuvant, adjuvant and intrapleural) is not clarified. For the patients with unresectable MPM, the combination cisplatin and pemetrexed or ralitrexed is the standard treatment as supported by a Phase III study. Better understanding of molecular pathways involved in MPM has enabled inclusion of new drugs targeted against pathways responsible for proliferation, cell survival and angiogenesis. Objective: This review discusses the current treatment option, the specific signal pathways activated in MPM and the novel agents under evaluation in clinical trials. Methods: We use for this article abstracts, papers, oral presentations from ASCO and the website http://www.clinical-trials.gov. Results/conclusion: This review summarizes the activity of chemotherapy and of new agents under evaluation in clinical trials. The better understanding of molecular pathways activated in MPM will hopefully provide new therapeutic options for these patients in the future.
Resumo:
Background Serum eosinophilic cationic protein (ECP) concentrations may be useful noninvasive markers of airways inflammation in atopic asthma. However, the usefulness of serum ECP measurement for the prediction of airways inflammation in children with a history of wheezing is unknown.
Resumo:
Neprilysin (NEP), also known as membrane metalloendopeptidase (MME), is considered amongst the most important ß-amyloid (Aß)-degrading enzymes with regard to prevention of Alzheimer's disease (AD) pathology. Variation in the NEP gene (MME) has been suggested as a risk factor for AD. We conducted a genetic association study of 7MME SNPs - rs1836914, rs989692, rs9827586, rs6797911, rs61760379, rs3736187, rs701109 - with respect to AD risk in a cohort of 1057 probable and confirmed AD cases and 424 age-matched non-demented controls from the United Kingdom, Italy and Sweden. We also examined the association of these MME SNPs with NEP protein level and enzyme activity, and on biochemical measures of Aß accumulation in frontal cortex - levels of total soluble Aß, oligomeric Aß(1-42), and guanidine-extractable (insoluble) Aß - in a sub-group of AD and control cases with post-mortem brain tissue. On multivariate logistic regression analysis one of the MME variants (rs6797911) was associated with AD risk (P = 0.00052, Odds Ratio (O.R. = 1.40, 95% confidence interval (1.16-1.70)). None of the SNPs had any association with Aß levels; however, rs9827586 was significantly associated with NEP protein level (p=0.014) and enzyme activity (p=0.006). Association was also found between rs701109 and NEP protein level (p=0.026) and a marginally non-significant association was found for rs989692 (p=0.055). These data suggest that MME variation may be associated with AD risk but we have not found evidence that this is mediated through modification of NEP protein level or activity.
Resumo:
There is an urgent need to improve upon Alzheimer's disease (AD) treatments. Limitations of existing drugs are that they target specific downstream neurochemical abnormalities while the upstream underlying pathology continues unchecked. Preferable treatments would be those that can target a number of the broad range of molecular and cellular abnormalities that occur in AD such as amyloid-ß (Aß) and hyperphosphorylated tau-mediated damage, inflammation, and mitochondrial dysfunction, as well more systemic abnormalities such as brain atrophy, impaired cerebral blood flow (CBF), and cerebrovascular disease. Recent pre-clinical, epidemiological, and a limited number of clinical investigations have shown that prevention of the signaling of the multifunctional and potent vasoconstrictor angiotensin II (Ang II) may offer broad benefits in AD. In addition to helping to ameliorate co-morbid hypertension, these drugs also likely improve diminished CBF which is common in AD and can contribute to focal Aß pathology. These drugs, angiotensin converting enzyme (ACE) inhibitors, or angiotensin receptor antagonists (ARAs) may also help deteriorating cognitive function by preventing Ang II-mediated inhibition of acetylcholine release as well as interrupt the upregulation of deleterious inflammatory pathways that are widely recognized in AD. Given the current urgency to find better treatments for AD and the relatively immediate availability of drugs that are already widely prescribed for the treatment of hypertension, one of the largest modifiable risk factors for AD, this article reviews current knowledge as to the eligibility of ACE-inhibitors and ARAs for consideration in future clinical trials in AD.
Resumo:
Lipopolysaccharide-binding protein (LBP) and CD14 contribute to the recognition of pathogens by cells, which triggers the activation of defence responses. Smoking is a risk factor for the development of chronic obstructive pulmonary disease (COPD) and respiratory infections. The current authors theorised that levels of LBP and CD14 in the lungs of smokers would be higher than those in the lungs of never-smokers. These elevated levels could affect host responses upon infection. LBP, soluble CD14 (sCD14) and interleukin (IL)-8 were detected by ELISA. Nuclear factor (NF)- ?B, p38 and the inhibitor I?Ba were studied by immunoassays. Gene expression was assessed by RT-PCR. Bronchoalveolar lavage levels of LBP and CD14 were significantly higher in smokers and COPD patients than in never-smokers, whereas levels of both proteins were not significantly different between smokers and COPD patients. IL-6, IL-1ß5 and cigarette smoke condensate induced the expression of LBP and CD14 by airway epithelial cells. LBP and sCD14 inhibited the nontypeable Haemophilus influenzae (NTHi)-dependent secretion of IL-8 and the activation of NF-?B and p38 mitogen-activated protein kinase signalling pathways but they increased the internalisation of NTHi by airway epithelial cells. Thus, in the inflamed airways of smokers both proteins could contribute to inhibit bacteria-dependent cellular activation without compromising the internalisation of pathogens by airway cells. Copyright©ERS Journals Ltd 2009.