835 resultados para Project 2002-005-C : Decision Support Tools for Concrete Infrastructure rehabilitation
Resumo:
Prescribing support for paediatrics is diverse and includes both standard texts and electronic tools. Evidence concerning who should be supported and by what method is limited. This review aims to collate the current information available on prescribing support in paediatrics. Many tools designed to support prescribers are technology based. For example, electronic prescribing and smart phone applications. There is a focus on prescriber education both at undergraduate and postgraduate level. In the UK, the majority of inpatient prescribing is done by junior medical staff. It is important to ensure they are competent on qualification and supported in this role. A UK national prescribing assessment is being trialled to test for competence on graduation and there are also tools available to test paediatric prescribing after qualification. No information is available on the tools and resources UK prescribers currently use to support their decision making. One US study reported a decrease in the availability of paediatric prescribing information in a popular reference text. There is limited evidence to show that decisionsupport tools improve patient outcomes, however, there is growing confirmation that electronic prescribing reduces medication errors. There have been reports of new error types, such as selection errors, occurring with the use of electronic prescribing. Another concern with computerised decision-support systems is deciding what alerts should be presented to the prescriber and when/how often in order to avoid alert fatigue. There is little published concerning paediatric alerts perhaps as a consequence of commercial systems often not including paediatric specific support.
Resumo:
Development of methods and tools for modeling human reasoning (common sense reasoning) by analogy in intelligent decision support systems is considered. Special attention is drawn to modeling reasoning by structural analogy taking the context into account. The possibility of estimating the obtained analogies taking into account the context is studied. This work was supported by RFBR.
Resumo:
The breadth and depth of available clinico-genomic information, present an enormous opportunity for improving our ability to study disease mechanisms and meet the individualised medicine needs. A difficulty occurs when the results are to be transferred 'from bench to bedside'. Diversity of methods is one of the causes, but the most critical one relates to our inability to share and jointly exploit data and tools. This paper presents a perspective on current state-of-the-art in the analysis of clinico-genomic data and its relevance to medical decision support. It is an attempt to investigate the issues related to data and knowledge integration. Copyright © 2010 Inderscience Enterprises Ltd.
Resumo:
Infrastructure management agencies are facing multiple challenges, including aging infrastructure, reduction in capacity of existing infrastructure, and availability of limited funds. Therefore, decision makers are required to think innovatively and develop inventive ways of using available funds. Maintenance investment decisions are generally made based on physical condition only. It is important to understand that spending money on public infrastructure is synonymous with spending money on people themselves. This also requires consideration of decision parameters, in addition to physical condition, such as strategic importance, socioeconomic contribution and infrastructure utilization. Consideration of multiple decision parameters for infrastructure maintenance investments can be beneficial in case of limited funding. Given this motivation, this dissertation presents a prototype decision support framework to evaluate trade-off, among competing infrastructures, that are candidates for infrastructure maintenance, repair and rehabilitation investments. Decision parameters' performances measured through various factors are combined to determine the integrated state of an infrastructure using Multi-Attribute Utility Theory (MAUT). The integrated state, cost and benefit estimates of probable maintenance actions are utilized alongside expert opinion to develop transition probability and reward matrices for each probable maintenance action for a particular candidate infrastructure. These matrices are then used as an input to the Markov Decision Process (MDP) for the finite-stage dynamic programming model to perform project (candidate)-level analysis to determine optimized maintenance strategies based on reward maximization. The outcomes of project (candidate)-level analysis are then utilized to perform network-level analysis taking the portfolio management approach to determine a suitable portfolio under budgetary constraints. The major decision support outcomes of the prototype framework include performance trend curves, decision logic maps, and a network-level maintenance investment plan for the upcoming years. The framework has been implemented with a set of bridges considered as a network with the assistance of the Pima County DOT, AZ. It is expected that the concept of this prototype framework can help infrastructure management agencies better manage their available funds for maintenance.
Resumo:
Increased pressure to control costs and increased competition has prompted health care managers to look for tools to effectively operate their institutions. This research sought a framework for the development of a Simulation-Based Decision Support System (SB-DSS) to evaluate operating policies. A prototype of this SB-DSS was developed. It incorporates a simulation model that uses real or simulated data. ER decisions have been categorized and, for each one, an implementation plan has been devised. Several issues of integrating heterogeneous tools have been addressed. The prototype revealed that simulation can truly be used in this environment in a timely fashion because the simulation model has been complemented with a series of decision-making routines. These routines use a hierarchical approach to organize the various scenarios under which the model may run and to partially reconfigure the ARENA model at run time. Hence, the SB-DSS tailors its responses to each node in the hierarchy.
Resumo:
The organisational decision making environment is complex, and decision makers must deal with uncertainty and ambiguity on a continuous basis. Managing and handling decision problems and implementing a solution, requires an understanding of the complexity of the decision domain to the point where the problem and its complexity, as well as the requirements for supporting decision makers, can be described. Research in the Decision Support Systems domain has been extensive over the last thirty years with an emphasis on the development of further technology and better applications on the one hand, and on the other hand, a social approach focusing on understanding what decision making is about and how developers and users should interact. This research project considers a combined approach that endeavours to understand the thinking behind managers’ decision making, as well as their informational and decisional guidance and decision support requirements. This research utilises a cognitive framework, developed in 1985 by Humphreys and Berkeley that juxtaposes the mental processes and ideas of decision problem definition and problem solution that are developed in tandem through cognitive refinement of the problem, based on the analysis and judgement of the decision maker. The framework facilitates the separation of what is essentially a continuous process, into five distinct levels of abstraction of manager’s thinking, and suggests a structure for the underlying cognitive activities. Alter (2004) argues that decision support provides a richer basis than decision support systems, in both practice and research. The constituent literature on decision support, especially in regard to modern high profile systems, including Business Intelligence and Business analytics, can give the impression that all ‘smart’ organisations utilise decision support and data analytics capabilities for all of their key decision making activities. However this empirical investigation indicates a very different reality.
Resumo:
The generation of heterogeneous big data sources with ever increasing volumes, velocities and veracities over the he last few years has inspired the data science and research community to address the challenge of extracting knowledge form big data. Such a wealth of generated data across the board can be intelligently exploited to advance our knowledge about our environment, public health, critical infrastructure and security. In recent years we have developed generic approaches to process such big data at multiple levels for advancing decision-support. It specifically concerns data processing with semantic harmonisation, low level fusion, analytics, knowledge modelling with high level fusion and reasoning. Such approaches will be introduced and presented in context of the TRIDEC project results on critical oil and gas industry drilling operations and also the ongoing large eVacuate project on critical crowd behaviour detection in confined spaces.
Resumo:
This report is the product of a first-year research project in the University Transportation Centers Program. This project was carried out by an interdisciplinary research team at The University of Iowa's Public Policy Center. The project developed a computerized system to support decisions on locating facilities that serve rural areas while minimizing transportation costs. The system integrates transportation databases with algorithms that specify efficient locations and allocate demand efficiently to service regions; the results of these algorithms are used interactively by decision makers. The authors developed documentation for the system so that others could apply it to estimate the transportation and route requirements of alternative locations and identify locations that meet certain criteria with the least cost. The system was developed and tested on two transportation-related problems in Iowa, and this report uses these applications to illustrate how the system can be used.
Resumo:
As climate change continues to impact socio-ecological systems, tools that assist conservation managers to understand vulnerability and target adaptations are essential. Quantitative assessments of vulnerability are rare because available frameworks are complex and lack guidance for dealing with data limitations and integrating across scales and disciplines. This paper describes a semi-quantitative method for assessing vulnerability to climate change that integrates socio-ecological factors to address management objectives and support decision-making. The method applies a framework first adopted by the Intergovernmental Panel on Climate Change and uses a structured 10-step process. The scores for each framework element are normalized and multiplied to produce a vulnerability score and then the assessed components are ranked from high to low vulnerability. Sensitivity analyses determine which indicators most influence the analysis and the resultant decision-making process so data quality for these indicators can be reviewed to increase robustness. Prioritisation of components for conservation considers other economic, social and cultural values with vulnerability rankings to target actions that reduce vulnerability to climate change by decreasing exposure or sensitivity and/or increasing adaptive capacity. This framework provides practical decision-support and has been applied to marine ecosystems and fisheries, with two case applications provided as examples: (1) food security in Pacific Island nations under climate-driven fish declines, and (2) fisheries in the Gulf of Carpentaria, northern Australia. The step-wise process outlined here is broadly applicable and can be undertaken with minimal resources using existing data, thereby having great potential to inform adaptive natural resource management in diverse locations.
Resumo:
Abstract Maintaining the health of a construction project can help to achieve the desired outcomes of the project. An analogy is drawn to the medical process of a human health check where it is possible to broadly diagnose health in terms of a number of key areas such as blood pressure or cholesterol level. Similarly it appears possible to diagnose the current health of a construction project in terms of a number of Critical Success Factors (CSFs) and key performance indicators (KPIs). The medical analogy continues into the detailed investigation phase where a number of contributing factors are evaluated to identify possible causes of ill health and through the identification of potential remedies to return the project to the desired level of health. This paper presents the development of a model that diagnoses the immediate health of a construction project, investigates the factors which appear to be causing the ill health and proposes a remedy to return the project to good health. The proposed model uses the well-established continuous improvement management model (Deming, 1986) to adapt the process of human physical health checking to construction project health.
Resumo:
With the application of GIS methodologies to spatial data, researchers can now identify patterns of occurrence for many social problems including health-issues and crime. Further more, since this type of data also contains clues as to the underlying causes of social problems, it can be used to make well-educated and consequently, more effective policy decisions.