999 resultados para Programmed instruction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a dynamic reordering superscalar processor, the front-end fetches instructions and places them in the issue queue. Instructions are then issued by the back-end execution core. Till recently, the front-end was designed to maximize performance without considering energy consumption. The front-end fetches instructions as fast as it can until it is stalled by a filled issue queue or some other blocking structure. This approach wastes energy: (i) speculative execution causes many wrong-path instructions to be fetched and executed, and (ii) back-end execution rate is usually less than its peak rate, but front-end structures are dimensioned to sustained peak performance. Dynamically reducing the front-end instruction rate and the active size of front-end structure (e.g. issue queue) is a required performance-energy trade-off. Techniques proposed in the literature attack only one of these effects.
In previous work, we have proposed Speculative Instruction Window Weighting (SIWW) [21], a fetch gating technique that allows to address both fetch gating and instruction issue queue dynamic sizing. SIWW computes a global weight on the set of inflight instructions. This weight depends on the number and types of inflight instructions (non-branches, high confidence or low confidence branches, ...). The front-end instruction rate can be continuously adapted based on this weight. This paper extends the analysis of SIWW performed in previous work. It shows that SIWW performs better than previously proposed fetch gating techniques and that SIWW allows to dynamically adapt the size of the active instruction queue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Programmed cell death (PCD) is executed by proteases, which cleave diverse proteins thus modulating their biochemical and cellular functions. Proteases of the caspase family and hundreds of caspase substrates constitute a major part of the PCD degradome in animals(1,2). Plants lack close homologues of caspases, but instead possess an ancestral family of cysteine proteases, metacaspases(3,4). Although metacaspases are essential for PCD(5-7), their natural substrates remain unknown(4,8). Here we show that metacaspase mcII-Pa cleaves a phylogenetically conserved protein, TSN (Tudor staphylococcal nuclease), during both developmental and stress-induced PCD. TSN knockdown leads to activation of ectopic cell death during reproduction, impairing plant fertility. Surprisingly, human TSN (also known as p100 or SND1), a multifunctional regulator of gene expression(9-15), is cleaved by caspase-3 during apoptosis. This cleavage impairs the ability of TSN to activate mRNA splicing, inhibits its ribonuclease activity and is important for the execution of apoptosis. Our results establish TSN as the first biological substrate of metacaspase and demonstrate that despite the divergence of plants and animals from a common ancestor about one billion years ago and their use of distinct PCD pathways, both have retained a common mechanism to compromise cell viability through the cleavage of the same substrate, TSN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant embryogenesis is intimately associated with programmed cell death. The mechanisms of initiation and control of programmed cell death during plant embryo development are not known. Proteolytic activity associated with caspase-like proteins is paramount for control of programmed cell death in animals and yeasts. Caspase family of proteases has unique strong preference for cleavage of the target proteins next to asparagine residue. In this work, we have used synthetic peptide substrates containing caspase recognition sites and corresponding specific inhibitors to analyse the role of caspase-like activity in the regulation of programmed cell death during plant embryogenesis. We demonstrate that VEIDase is a principal caspase-like activity implicated in plant embryogenesis. This activity increases at the early stages of embryo development that coincide with massive cell death during shape remodeling. The VEIDase activity exhibits high sensitivity to pH, ionic strength and Zn2+ concentration. Altogether, biochemical assays show that VEIDase plant caspase-like activity resembles that of both mammalian caspase-6 and yeast metacaspase, YCA1. In vivo, VEIDase activity is localised specifically in the embryonic cells during both the commitment and in the beginning of the execution phase of programmed cell death. Inhibition of VEIDase prevents normal embryo development via blocking the embryo-suspensor differentiation. Our data indicate that the VEIDase activity is an integral part in the control of plant developmental cell death programme, and that this activity is essential for the embryo pattern formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell and tissue patterning in plant embryo development is well documented. Moreover, it has recently been shown that successful embryogenesis is reliant on programmed cell death (PCD). The cytoskeleton governs cell morphogenesis. However, surprisingly little is known about the role of the cytoskeleton in plant embryogenesis and associated PCD. We have used the gymnosperm, Picea abies , somatic embryogenesis model system to address this question. Formation of the apical-basal embryonic pattern in P. abies proceeds through the establishment of three major cell types: the meristematic cells of the embryonal mass on one pole and the terminally differentiated suspensor cells on the other, separated by the embryonal tube cells. The organisation of microtubules and F-actin changes successively from the embryonal mass towards the distal end of the embryo suspensor. The microtubule arrays appear normal in the embryonal mass cells, but the microtubule network is partially disorganised in the embryonal tube cells and the microtubules disrupted in the suspensor cells. In the same embryos, the microtubule-associated protein, MAP-65, is bound only to organised microtubules. In contrast, in a developmentally arrested cell line, which is incapable of normal embryonic pattern formation, MAP-65 does not bind the cortical microtubules and we suggest that this is a criterion for proembryogenic masses (PEMs) to passage into early embryogeny. In embryos, the organisation of F-actin gradually changes from a fine network in the embryonal mass cells to thick cables in the suspensor cells in which the microtubule network is completely degraded. F-actin de-polymerisation drugs abolish normal embryonic pattern formation and associated PCD in the suspensor, strongly suggesting that the actin network is vital in this PCD pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper focuses on quantifying the benefits of pictogram based instructions relative to static images for work instruction delivery. The assembly of a stiffened aircraft panel has been used as an exemplar for the work which seeks to address the challenge of identifying an instructional mode that can be location or language neutral while at the same time optimising assembly build times and maintaining build quality. Key performance parameters measured using a series of panel build experiments conducted by two separate groups were: overall build time, the number of subject references to instructional media, the number of build errors and the time taken to correct any mistakes. Overall build time for five builds for a group using pictogram instructions was about 20% lower than for the group using image based instructions. Also, the pictogram group made fewer errors. Although previous work identified that animated instructions result in optimal build times, the language neutrality of pictograms as well as the fact that they can be used without visualisation hardware mean that, on balance, they have broader applicability in terms of transferring assembly knowledge to the manufacturing environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Static timing analysis provides the basis for setting the clock period of a microprocessor core, based on its worst-case critical path. However, depending on the design, this critical path is not always excited and therefore dynamic timing margins exist that can theoretically be exploited for the benefit of better speed or lower power consumption (through voltage scaling). This paper introduces predictive instruction-based dynamic clock adjustment as a technique to trim dynamic timing margins in pipelined microprocessors. To this end, we exploit the different timing requirements for individual instructions during the dynamically varying program execution flow without the need for complex circuit-level measures to detect and correct timing violations. We provide a design flow to extract the dynamic timing information for the design using post-layout dynamic timing analysis and we integrate the results into a custom cycle-accurate simulator. This simulator allows annotation of individual instructions with their impact on timing (in each pipeline stage) and rapidly derives the overall code execution time for complex benchmarks. The design methodology is illustrated at the microarchitecture level, demonstrating the performance and power gains possible on a 6-stage OpenRISC in-order general purpose processor core in a 28nm CMOS technology. We show that employing instruction-dependent dynamic clock adjustment leads on average to an increase in operating speed by 38% or to a reduction in power consumption by 24%, compared to traditional synchronous clocking, which at all times has to respect the worst-case timing identified through static timing analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer is one of the leading causes of death in the world. Despite this, a growing number of people are surviving the disease due to medical advancements and the development of numerous new therapies. Doxorubicin, a chemotherapeutic agent, is a widely-used and successful first-line anti-tumour treatment. However, the established toxic and deleterious effects of the drug on the cardiovascular system confer increased risk of congestive heart failure, thereby necessitating the use of reduced doxorubicin doses. In order to investigate how these events are initiated, mouse cardiomyocytes (HL-1) were treated in vitro with varying concentrations of doxorubicin (0.5-4.0 µmol/L). Following treatment (24h), a marked level of cell death was observed in comparison to untreated cardiomyocytes; the level of death appeared to correlate with the concentration of the drug used. Western blotting revealed the cleavage of full length Poly (ADP-ribose) polymerase (PARP) into 89 and 24kDa fragments, a process which is instrumental in triggering programmed cell death/apoptosis. Importantly, results suggested that this event may be independent of caspase 3 cleavage and thus activation. A number of previous studies have reported a functional role for both Mitofusin-2 (Mfn2) and NADPH oxidase 2 (Nox2) in the cardiotoxic response. Given that PARP cleavage is a validated indicator of cellular apoptosis, these results clearly indicate that this marker could be used in future studies when determining if depletion of the above proteins would cause a reduction in or eradicate the pro-apoptotic action of this agent on cardiomyocytes. Such investigations may lead to significant developments in ensuring that doxorubicin can achieve its full therapeutic anti-tumour potential without causing the subsequent deleterious effects on the cardiovascular system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a widely held view that learning to play a musical instrument is a valuable experience for all children in terms of their personal growth and development. Although there is no statutory obligation for instrumental music provision in Scottish primary schools, there are well-established Instrumental Music Services in Local Education Authorities that have been developed to provide this facility for pupils. This article presents the findings of a study that was aimed at investigating the extent to which the opportunity to undertake instrumental instruction in Scottish primary schools is equitable. The study employed a mixed-methods approach. Data were gathered from 21 Scottish primary schools, a total pupil population of 5122 pupils of whom 323 pupils were receiving instrumental instruction. The analysis involved an investigation of the academic profile of this group, the representation of children with additional support needs (ASN) and the nature of their ASN. A qualitative analysis of policy and guideline documents and interviews with Heads of Instrumental Services, headteachers and instrumental instructors served to explain and illuminate the quantitative data. The findings showed that particular groups of children with ASN were significantly under-represented and offer explanations of the processes by which this occurs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering Alan Turing’s challenge in «Computing Machinery and Intelligence» (1950) – can machines play the «imitation game»? – it is proposed that the requirements of the Turing test are already implicitly being used for checking the credibility of virtual characters and avatars. Like characters, Avatars aim to visually express emotions (the exterior signs of the existence of feeling) and its creators have to resort to emotion codes. Traditional arts have profusely contributed for this field and, together with the science of anatomy, shaped the grounds for current Facial Action Coding System (FACS) and their databases. However, FACS researchers have to improve their «instruction tables» so that the machines will be able, in a near future, to be programmed to carry out the operation of recognizing human expressions (face and body) and classify them adequately. For the moment, the reproductions have to resort to the copy of real life expressions, and the presente smile of avatars comes from mirroring their human users.