975 resultados para Programmable logic


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aims of this thesis were evaluation the type of wave channel, wave current, and effect of some parameters on them and identification and comparison between types of wave maker in laboratory situations. In this study, designing and making of two dimension channels (flume) and wave maker for experiment son the marine buoy, marine building and energy conversion systems were also investigated. In current research, the physical relation between pump and pumpage and the designing of current making in flume were evaluated. The related calculation for steel building, channels beside glasses and also equations of wave maker plate movement, power of motor and absorb wave(co astal slope) were calculated. In continue of this study, the servo motor was designed and applied for moving of wave maker’s plate. One Ball Screw Leaner was used for having better movement mechanisms of equipment and convert of the around movement to linear movement. The Programmable Logic Controller (PLC) was also used for control of wave maker system. The studies were explained type of ocean energies and energy conversion systems. In another part of this research, the systems of energy resistance in special way of Oscillating Water Column (OWC) were explained and one sample model was designed and applied in hydrolic channel at the Sheikh Bahaii building in Azad University, Science and Research Branch. The dimensions of designed flume was considered at 16 1.98 0. 57 m which had ability to provide regular waves as well as irregular waves with little changing on the control system. The ability of making waves was evaluated in our designed channel and the results were showed that all of the calculation in designed flume was correct. The mean of error between our results and theory calculation was conducted 7%, which was showed the well result in this situation. With evaluating of designed OWC model and considering of changes in the some part of system, one bigger sample of this model can be used for designing the energy conversion system model. The obtained results showed that the best form for chamber in exit position of system, were zero degree (0) in angle for moving below part, forty and five (45) degree in front wall of system and the moving forward of front wall keep in two times of height of wave.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta dissertação desenvolve uma plataforma de controlo interactiva para edifícios inteligentes através de um sistema SCADA (Supervisory Control And Data Acquisition). Este sistema SCADA integra diferentes tipos de informações provenientes das várias tecnologias presentes em edifícios modernos (controlo da ventilação, temperatura, iluminação, etc.). A estratégia de controlo desenvolvida implementa um controlador em cascada hierárquica onde os "loops" interiores são executados pelos PLC's locais (Programmable Logic Controller), e o "loop" exterior é gerido pelo sistema SCADA centralizado, que interage com a rede local de PLC's. Nesta dissertação é implementado um controlador preditivo na plataforma SCADA centralizada. São apresentados testes efectuados para o controlo da temperatura e luminosidade de salas com uma grande área. O controlador preditivo desenvolvido tenta optimizar a satisfação dos utilizadores, com base nas preferências introduzidas em várias interfaces distribuídas, sujeito às restrições de minimização do desperdício de energia. De forma a executar o controlador preditivo na plataforma SCADA foi desenvolvido um canal de comunicação para permitir a comunicação entre a aplicação SCADA e a aplicação MATLAB, onde o controlador preditivo é executado. ABSTRACT: This dissertation develops an operational control platform for intelligent buildings using a SCADA system (Supervisory Control And Data Acquisition). This SCADA system integrates different types of information coming from the several technologies present in modem buildings (control of ventilation, temperature, illumination, etc.). The developed control strategy implements a hierarchical cascade controller where inner loops are performed by local PLCs (Programmable Logic Controller), and the outer loop is managed by the centralized SCADA system, which interacts with the entire local PLC network. ln this dissertation a Predictive Controller is implemented at the centralized SCADA platform. Tests applied to the control of temperature and luminosity in huge­area rooms are presented. The developed Predictive Controller tries to optimize the satisfaction of user explicit preferences coming from several distributed user-interfaces, subjected to the constraints of energy waste minimization. ln order to run the Predictive Controller at the SCADA platform a communication channel was developed to allow communication between the SCADA application and the MATLAB application where the Predictive Controller runs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work proposes an environment for programming programmable logic controllers applied to oil wells with BCP type method of artificially lifting. The environment will have an editor based in the diagram of sequential functions for programming of PLCs. This language was chosen due to the fact of being high-level and accepted by the international standard IEC 61131-3. The use of these control programs in real PLC will be possible with the use of an intermediate level of language based on XML specification PLCopen T6 XML. For the testing and validation of the control programs, an area should be available for viewing variables obtained through communication with a real PLC. Thus, the main contribution of this work is to develop a computational environment that allows: modeling, testing and validating the controls represented in SFC and applied in oil wells with BCP type method of artificially lifting

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Wireless Sensor Networks (WSN) methods applied to the lifting of oil present as an area with growing demand technical and scientific in view of the optimizations that can be carried forward with existing processes. This dissertation has as main objective to present the development of embedded systems dedicated to a wireless sensor network based on IEEE 802.15.4, which applies the ZigBee protocol, between sensors, actuators and the PLC (Programmable Logic Controller), aiming to solve the present problems in the deployment and maintenance of the physical communication of current elevation oil units based on the method Plunger-Lift. Embedded systems developed for this application will be responsible for acquiring information from sensors and control actuators of the devices present at the well, and also, using the Modbus protocol to make this network becomes transparent to the PLC responsible for controlling the production and delivery information for supervisory SISAL

Relevância:

60.00% 60.00%

Publicador:

Resumo:

From their early days, Electrical Submergible Pumping (ESP) units have excelled in lifting much greater liquid rates than most of the other types of artificial lift and developed by good performance in wells with high BSW, in onshore and offshore environments. For all artificial lift system, the lifetime and frequency of interventions are of paramount importance, given the high costs of rigs and equipment, plus the losses coming from a halt in production. In search of a better life of the system comes the need to work with the same efficiency and security within the limits of their equipment, this implies the need for periodic adjustments, monitoring and control. How is increasing the prospect of minimizing direct human actions, these adjustments should be made increasingly via automation. The automated system not only provides a longer life, but also greater control over the production of the well. The controller is the brain of most automation systems, it is inserted the logic and strategies in the work process in order to get you to work efficiently. So great is the importance of controlling for any automation system is expected that, with better understanding of ESP system and the development of research, many controllers will be proposed for this method of artificial lift. Once a controller is proposed, it must be tested and validated before they take it as efficient and functional. The use of a producing well or a test well could favor the completion of testing, but with the serious risk that flaws in the design of the controller were to cause damage to oil well equipment, many of them expensive. Given this reality, the main objective of the present work is to present an environment for evaluation of fuzzy controllers for wells equipped with ESP system, using a computer simulator representing a virtual oil well, a software design fuzzy controllers and a PLC. The use of the proposed environment will enable a reduction in time required for testing and adjustments to the controller and evaluated a rapid diagnosis of their efficiency and effectiveness. The control algorithms are implemented in both high-level language, through the controller design software, such as specific language for programming PLCs, Ladder Diagram language.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Electrical Submersible Pumping is an artificial lift method for oil wells employed in onshore and offshore areas. The economic revenue of the petroleum production in a well depends on the oil flow and the availability of lifting equipment. The fewer the failures, the lower the revenue shortfall and costs to repair it. The frequency with which failures occur depends on the operating conditions to which the pumps are submitted. In high-productivity offshore wells monitoring is done by operators with engineering support 24h/day, which is not economically viable for the land areas. In this context, the automation of onshore wells has clear economic advantages. This work proposes a system capable of automatically control the operation of electrical submersible pumps, installed in oil wells, by an adjustment at the electric motor rotation based on signals provided by sensors installed on the surface and subsurface, keeping the pump operating within the recommended range, closest to the well s potential. Techniques are developed to estimate unmeasured variables, enabling the automation of wells that do not have all the required sensors. The automatic adjustment, according to an algorithm that runs on a programmable logic controller maintains the flow and submergence within acceptable parameters avoiding undesirable operating conditions, as the gas interference and high engine temperature, without need to resort to stopping the engine, which would reduce the its useful life. The control strategy described, based on modeling of physical phenomena and operational experience reported in literature, is materialized in terms of a fuzzy controller based on rules, and all generated information can be accompanied by a supervisory system

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thesis--University of Illinois.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many computationally intensive scientific applications involve repetitive floating point operations other than addition and multiplication which may present a significant performance bottleneck due to the relatively large latency or low throughput involved in executing such arithmetic primitives on commod- ity processors. A promising alternative is to execute such primitives on Field Programmable Gate Array (FPGA) hardware acting as an application-specific custom co-processor in a high performance reconfig- urable computing platform. The use of FPGAs can provide advantages such as fine-grain parallelism but issues relating to code development in a hardware description language and efficient data transfer to and from the FPGA chip can present significant application development challenges. In this paper, we discuss our practical experiences in developing a selection of floating point hardware designs to be implemented using FPGAs. Our designs include some basic mathemati cal library functions which can be implemented for user defined precisions suitable for novel applications requiring non-standard floating point represen- tation. We discuss the details of our designs along with results from performance and accuracy analysis tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present the outcomes of a project on the exploration of the use of Field Programmable Gate Arrays(FPGAs) as co-processors for scientific computation. We designed a custom circuit for the pipelined solving of multiple tri-diagonal linear systems. The design is well suited for applications that require many independent tri diagonal system solves, such as finite difference methods for solving PDEs or applications utilising cubic spline interpolation. The selected solver algorithm was the Tri Diagonal Matrix Algorithm (TDMA or Thomas Algorithm). Our solver supports user specified precision thought the use of a custom floating point VHDL library supporting addition, subtraction, multiplication and division. The variable precision TDMA solver was tested for correctness in simulation mode. The TDMA pipeline was tested successfully in hardware using a simplified solver model. The details of implementation, the limitations, and future work are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present the outcomes of a project on the exploration of the use of Field Programmable Gate Arrays (FPGAs) as co-processors for scientific computation. We designed a custom circuit for the pipelined solving of multiple tri-diagonal linear systems. The design is well suited for applications that require many independent tri-diagonal system solves, such as finite difference methods for solving PDEs or applications utilising cubic spline interpolation. The selected solver algorithm was the Tri-Diagonal Matrix Algorithm (TDMA or Thomas Algorithm). Our solver supports user specified precision thought the use of a custom floating point VHDL library supporting addition, subtraction, multiplication and division. The variable precision TDMA solver was tested for correctness in simulation mode. The TDMA pipeline was tested successfully in hardware using a simplified solver model. The details of implementation, the limitations, and future work are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd. Summary A field programmable gate array (FPGA) based model predictive controller for two phases of spacecraft rendezvous is presented. Linear time-varying prediction models are used to accommodate elliptical orbits, and a variable prediction horizon is used to facilitate finite time completion of the longer range manoeuvres, whilst a fixed and receding prediction horizon is used for fine-grained tracking at close range. The resulting constrained optimisation problems are solved using a primal-dual interior point algorithm. The majority of the computational demand is in solving a system of simultaneous linear equations at each iteration of this algorithm. To accelerate these operations, a custom circuit is implemented, using a combination of Mathworks HDL Coder and Xilinx System Generator for DSP, and used as a peripheral to a MicroBlaze soft-core processor on the FPGA, on which the remainder of the system is implemented. Certain logic that can be hard-coded for fixed sized problems is implemented to be configurable online, in order to accommodate the varying problem sizes associated with the variable prediction horizon. The system is demonstrated in closed-loop by linking the FPGA with a simulation of the spacecraft dynamics running in Simulink on a PC, using Ethernet. Timing comparisons indicate that the custom implementation is substantially faster than pure embedded software-based interior point methods running on the same MicroBlaze and could be competitive with a pure custom hardware implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a reconfigurable binary-decision-diagram logic circuit based on Shannon's expansion of Boolean logic function and its graphical representation on a semiconductor nanowire network. The circuit is reconfigured by using programmable switches that electrically connect and disconnect a small number of branches. This circuit has a compact structure with a small number of devices compared with the conventional look-up table architecture. A variable Boolean logic circuit was fabricated on an etched GaAs nanowire network having hexagonal topology with Schottky wrap gates and SiN-based programmable switches, and its correct logic operation together with dynamic reconfiguration was demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes novel universal logic gates using the current quantization characteristics of nanodevices. In nanodevices like the electron waveguide (EW) and single-electron (SE) turnstile, the channel current is a staircase quantized function of its control voltage. We use this unique characteristic to compactly realize Boolean functions. First we present the concept of the periodic-threshold threshold logic gate (PTTG), and we build a compact PTTG using EW and SE turnstiles. We show that an arbitrary three-input Boolean function can be realized with a single PTTG, and an arbitrary four-input Boolean function can be realized by using two PTTGs. We then use one PTTG to build a universal programmable two-input logic gate which can be used to realize all two-input Boolean functions. We also build a programmable three-input logic gate by using one PTTG. Compared with linear threshold logic gates, with the PTTG one can build digital circuits more compactly. The proposed PTTGs are promising for future smart nanoscale digital system use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of full programmable type-2 membership function circuit is presented in this paper. This circuit is used to implement the fuzzifier block of Type-2 Fuzzy Logic Controller chip. In this paper the type-2 fuzzy set was obtained by blurring the width of the type-1 fuzzy set. This circuit allows programming the height and the shape of the membership function. It operates in current mode, with supply voltage of 3.3V. The simulation results of interval type-2 membership function circuit have been done in CMOS 0.35μm technology using Mentor Graphics software. © 2011 IEEE.