931 resultados para Production Potential of Pirarucu


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The very high antiproliferative activity of [Co(Cl)(H2O)(phendione)(2)][BF4] (phendione is 1,10-phenanthroline-5,6-dione) against three human tumor cell lines (half-maximal inhibitory concentration below 1 mu M) and its slight selectivity for the colorectal tumor cell line compared with healthy human fibroblasts led us to explore the mechanisms of action underlying this promising antitumor potential. As previously shown by our group, this complex induces cell cycle arrest in S phase and subsequent cell death by apoptosis and it also reduces the expression of proteins typically upregulated in tumors. In the present work, we demonstrate that [Co(Cl)(phendione)(2)(H2O)][BF4] (1) does not reduce the viability of nontumorigenic breast epithelial cells by more than 85 % at 1 mu M, (2) promotes the upregulation of proapoptotic Bax and cell-cycle-related p21, and (3) induces release of lactate dehydrogenase, which is partially reversed by ursodeoxycholic acid. DNA interaction studies were performed to uncover the genotoxicity of the complex and demonstrate that even though it displays K (b) (+/- A standard error of the mean) of (3.48 +/- A 0.03) x 10(5) M-1 and is able to produce double-strand breaks in a concentration-dependent manner, it does not exert any clastogenic effect ex vivo, ruling out DNA as a major cellular target for the complex. Steady-state and time-resolved fluorescence spectroscopy studies are indicative of a strong and specific interaction of the complex with human serum albumin, involving one binding site, at a distance of approximately 1.5 nm for the Trp214 indole side chain with log K (b) similar to 4.7, thus suggesting that this complex can be efficiently transported by albumin in the blood plasma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fractional calculus (FC) is currently being applied in many areas of science and technology. In fact, this mathematical concept helps the researches to have a deeper insight about several phenomena that integer order models overlook. Genetic algorithms (GA) are an important tool to solve optimization problems that occur in engineering. This methodology applies the concepts that describe biological evolution to obtain optimal solution in many different applications. In this line of thought, in this work we use the FC and the GA concepts to implement the electrical fractional order potential. The performance of the GA scheme, and the convergence of the resulting approximation, are analyzed. The results are analyzed for different number of charges and several fractional orders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis submitted to the Faculdade de Ciências e Tecnologia to obtain the Master’s degree in Environmental Engineering, profile in Ecological Engineering

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation presented to obtain a Ph.D. degree in Engineering and Technology Sciences, Systems Biology at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa

Relevância:

100.00% 100.00%

Publicador:

Resumo:

6th Graduate Student Symposium on Molecular Imprinting