850 resultados para Private cloud computing
Resumo:
This article will address the main technical aspects that facilitate the use and growth of computer technology in the cloud, which go hand in hand with the emergence of more and better services on the Internet and technological development of the broadband. Finally, we know what is the impact that the cloud computing technologies in the automation of information units.
Resumo:
Introducción: Los softwares dietoterapéuticos constituyen actualmente una herramienta básica en el tratamiento dietético de pacientes, ya sea desde un punto de vista fisiológico y/o patológico. Las nuevas tecnologías y la investigación en este sentido, han favorecido la aparición de nuevas aplicaciones de gestión dietético-nutricional que facilitan la gestión de la empresa dietoterapéutica. Objetivos: Estudiar comparativamente las principales aplicaciones dietoterapéuticas existentes en el mercado para dar criterio a los usuarios profesionales de la dietética y nutrición en la selección de una de las principales herramientas para éstos. Resultados: Desde nuestro punto de vista, dietopro. com resulta, junto con otras de las aplicaciones dietoterapéuticas analizadas, una de las más completas para la gestión de la clínica nutricional. Conclusión: En función de la necesidad del usuario, éste dispone de diferentes softwares dietéticos donde elegir. Se concluye que la selección de una u otra, depende de las necesidades del profesional.
Resumo:
Nowadays, data handling and data analysis in High Energy Physics requires a vast amount of computational power and storage. In particular, the world-wide LHC Com- puting Grid (LCG), an infrastructure and pool of services developed and deployed by a ample community of physicists and computer scientists, has demonstrated to be a game changer in the efficiency of data analyses during Run-I at the LHC, playing a crucial role in the Higgs boson discovery. Recently, the Cloud computing paradigm is emerging and reaching a considerable adoption level by many different scientific organizations and not only. Cloud allows to access and utilize not-owned large computing resources shared among many scientific communities. Considering the challenging requirements of LHC physics in Run-II and beyond, the LHC computing community is interested in exploring Clouds and see whether they can provide a complementary approach - or even a valid alternative - to the existing technological solutions based on Grid. In the LHC community, several experiments have been adopting Cloud approaches, and in particular the experience of the CMS experiment is of relevance to this thesis. The LHC Run-II has just started, and Cloud-based solutions are already in production for CMS. However, other approaches of Cloud usage are being thought of and are at the prototype level, as the work done in this thesis. This effort is of paramount importance to be able to equip CMS with the capability to elastically and flexibly access and utilize the computing resources needed to face the challenges of Run-III and Run-IV. The main purpose of this thesis is to present forefront Cloud approaches that allow the CMS experiment to extend to on-demand resources dynamically allocated as needed. Moreover, a direct access to Cloud resources is presented as suitable use case to face up with the CMS experiment needs. Chapter 1 presents an overview of High Energy Physics at the LHC and of the CMS experience in Run-I, as well as preparation for Run-II. Chapter 2 describes the current CMS Computing Model, and Chapter 3 provides Cloud approaches pursued and used within the CMS Collaboration. Chapter 4 and Chapter 5 discuss the original and forefront work done in this thesis to develop and test working prototypes of elastic extensions of CMS computing resources on Clouds, and HEP Computing “as a Service”. The impact of such work on a benchmark CMS physics use-cases is also demonstrated.
Resumo:
Cloud computing has seen an impressive growth in recent years, with virtualization technologies being massively adopted to create IaaS (Infrastructure as a Service) public and private solutions. Today, the interest is shifting towards the PaaS (Platform as a Service) model, which allows developers to abstract from the execution platform and focus only on the functionality. There are several public PaaS offerings available, but currently no private PaaS solution is ready for production environments. To fill this gap a new solution must be developed. In this paper we present a key element for enabling this model: a cloud repository based on the OSGi component model. The repository stores, manages, provisions and resolves the dependencies of PaaS software components and services. This repository can federate with other repositories located in the same or different clouds, both private and public. This way, dependencies can be fulfilled collaboratively, and new business models can be implemented.
Resumo:
El mundo tecnológico está cambiando hacia la optimización en la gestión de recursos gracias a la poderosa influencia de tecnologías como la virtualización y la computación en la nube (Cloud Computing). En esta memoria se realiza un acercamiento a las mismas, desde las causas que las motivaron hasta sus últimas tendencias, pasando por la identificación de sus principales características, ventajas e inconvenientes. Por otro lado, el Hogar Digital es ya una realidad para la mayoría de los seres humanos. En él se dispone de acceso a múltiples tipos de redes de telecomunicaciones (3G, 4G, WI-FI, ADSL…) con más o menos capacidad pero que permiten conexiones a internet desde cualquier parte, en todo momento, y con prácticamente cualquier dispositivo (ordenadores personales, smartphones, tabletas, televisores…). Esto es aprovechado por las empresas para ofrecer todo tipo de servicios. Algunos de estos servicios están basados en el cloud computing sobre todo ofreciendo almacenamiento en la nube a aquellos dispositivos con capacidad reducida, como son los smarthphones y las tabletas. Ese espacio de almacenamiento normalmente está en los servidores bajo el control de grandes compañías. Guardar documentos, videos, fotos privadas sin tener la certeza de que estos no son consultados por alguien sin consentimiento, puede despertar en el usuario cierto recelo. Para estos usuarios que desean control sobre su intimidad, se ofrece la posibilidad de que sea el propio usuario el que monte sus propios servidores y su propio servicio cloud para compartir su información privada sólo con sus familiares y amigos o con cualquiera al que le dé permiso. Durante el proyecto se han comparado diversas soluciones, la mayoría de código abierto y de libre distribución, que permiten desplegar como mínimo un servicio de almacenamiento accesible a través de Internet. Algunas de ellas lo complementan con servicios de streaming tanto de música como de videos, compartición y sincronización de documentos entre múltiples dispositivos, calendarios, copias de respaldo (backups), virtualización de escritorios, versionado de ficheros, chats, etc. El proyecto finaliza con una demostración de cómo utilizar dispositivos de un hogar digital interactuando con un servidor Cloud, en el que previamente se ha instalado y configurado una de las soluciones comparadas. Este servidor quedará empaquetado en una máquina virtual para que sea fácilmente transportable e utilizable. ABSTRACT. The technological world is changing towards optimizing resource management thanks to the powerful influence of technologies such as Virtualization and Cloud Computing. This document presents a closer approach to them, from the causes that have motivated to their last trends, as well as showing their main features, advantages and disadvantages. In addition, the Digital Home is a reality for most humans. It provides access to multiple types of telecommunication networks (3G, 4G, WI-FI, ADSL...) with more or less capacity, allowing Internet connections from anywhere, at any time, and with virtually any device (computer personal smartphones, tablets, televisions...).This is used by companies to provide all kinds of services. Some of these services offer storage on the cloud to devices with limited capacity, such as smartphones and tablets. That is normally storage space on servers under the control of important companies. Saving private documents, videos, photos, without being sure that they are not viewed by anyone without consent, can wake up suspicions in some users. For those users who want control over their privacy, it offers the possibility that it is the user himself to mount his own server and its own cloud service to share private information only with family and friends or with anyone with consent. During the project I have compared different solutions, most open source and with GNU licenses, for deploying one storage facility accessible via the Internet. Some supplement include streaming services of music , videos or photos, sharing and syncing documents across multiple devices, calendars, backups, desktop virtualization, file versioning, chats... The project ends with a demonstration of how to use our digital home devices interacting with a cloud server where one of the solutions compared is installed and configured. This server will be packaged in a virtual machine to be easily transportable and usable.
Resumo:
Cloud computing and, more particularly, private IaaS, is seen as a mature technology with a myriad solutions tochoose from. However, this disparity of solutions and products has instilled in potential adopters the fear of vendor and data lock-in. Several competing and incompatible interfaces and management styles have given even more voice to these fears. On top of this, cloud users might want to work with several solutions at the same time, an integration that is difficult to achieve in practice. In this paper, we propose a management architecture that tries to tackle these problems; it offers a common way of managing several cloud solutions, and an interface that can be tailored to the needs of the user. This management architecture is designed in a modular way, and using a generic information model. We have validated our approach through the implementation of the components needed for this architecture to support a sample private IaaS solution: OpenStack
Resumo:
The size and complexity of cloud environments make them prone to failures. The traditional approach to achieve a high dependability for these systems relies on constant monitoring. However, this method is purely reactive. A more proactive approach is provided by online failure prediction (OFP) techniques. In this paper, we describe a OFP system for private IaaS platforms, currently under development, that combines di_erent types of data input, including monitoring information, event logs, and failure data. In addition, this system operates at both the physical and virtual planes of the cloud, taking into account the relationships between nodes and failure propagation mechanisms that are unique to cloud environments.
Resumo:
Cloud computing and, more particularly, private IaaS, is seen as a mature technol- ogy with a myriad solutions to choose from. However, this disparity of solutions and products has instilled in potential adopters the fear of vendor and data lock- in. Several competing and incompatible interfaces and management styles have increased even more these fears. On top of this, cloud users might want to work with several solutions at the same time, an integration that is difficult to achieve in practice. In this Master Thesis I propose a management architecture that tries to solve these problems; it provides a generalized control mechanism for several cloud infrastructures, and an interface that can meet the requirements of the users. This management architecture is designed in a modular way, and using a generic infor- mation model. I have validated the approach through the implementation of the components needed for this architecture to support a sample private IaaS solution: OpenStack.
Resumo:
PURPOSE: Radiation therapy is used to treat cancer using carefully designed plans that maximize the radiation dose delivered to the target and minimize damage to healthy tissue, with the dose administered over multiple occasions. Creating treatment plans is a laborious process and presents an obstacle to more frequent replanning, which remains an unsolved problem. However, in between new plans being created, the patient's anatomy can change due to multiple factors including reduction in tumor size and loss of weight, which results in poorer patient outcomes. Cloud computing is a newer technology that is slowly being used for medical applications with promising results. The objective of this work was to design and build a system that could analyze a database of previously created treatment plans, which are stored with their associated anatomical information in studies, to find the one with the most similar anatomy to a new patient. The analyses would be performed in parallel on the cloud to decrease the computation time of finding this plan. METHODS: The system used SlicerRT, a radiation therapy toolkit for the open-source platform 3D Slicer, for its tools to perform the similarity analysis algorithm. Amazon Web Services was used for the cloud instances on which the analyses were performed, as well as for storage of the radiation therapy studies and messaging between the instances and a master local computer. A module was built in SlicerRT to provide the user with an interface to direct the system on the cloud, as well as to perform other related tasks. RESULTS: The cloud-based system out-performed previous methods of conducting the similarity analyses in terms of time, as it analyzed 100 studies in approximately 13 minutes, and produced the same similarity values as those methods. It also scaled up to larger numbers of studies to analyze in the database with a small increase in computation time of just over 2 minutes. CONCLUSION: This system successfully analyzes a large database of radiation therapy studies and finds the one that is most similar to a new patient, which represents a potential step forward in achieving feasible adaptive radiation therapy replanning.
Resumo:
The evolution and maturation of Cloud Computing created an opportunity for the emergence of new Cloud applications. High-performance Computing, a complex problem solving class, arises as a new business consumer by taking advantage of the Cloud premises and leaving the expensive datacenter management and difficult grid development. Standing on an advanced maturing phase, today’s Cloud discarded many of its drawbacks, becoming more and more efficient and widespread. Performance enhancements, prices drops due to massification and customizable services on demand triggered an emphasized attention from other markets. HPC, regardless of being a very well established field, traditionally has a narrow frontier concerning its deployment and runs on dedicated datacenters or large grid computing. The problem with common placement is mainly the initial cost and the inability to fully use resources which not all research labs can afford. The main objective of this work was to investigate new technical solutions to allow the deployment of HPC applications on the Cloud, with particular emphasis on the private on-premise resources – the lower end of the chain which reduces costs. The work includes many experiments and analysis to identify obstacles and technology limitations. The feasibility of the objective was tested with new modeling, architecture and several applications migration. The final application integrates a simplified incorporation of both public and private Cloud resources, as well as HPC applications scheduling, deployment and management. It uses a well-defined user role strategy, based on federated authentication and a seamless procedure to daily usage with balanced low cost and performance.
Resumo:
Elasticity is one of the most known capabilities related to cloud computing, being largely deployed reactively using thresholds. In this way, maximum and minimum limits are used to drive resource allocation and deallocation actions, leading to the following problem statements: How can cloud users set the threshold values to enable elasticity in their cloud applications? And what is the impact of the applications load pattern in the elasticity? This article tries to answer these questions for iterative high performance computing applications, showing the impact of both thresholds and load patterns on application performance and resource consumption. To accomplish this, we developed a reactive and PaaS-based elasticity model called AutoElastic and employed it over a private cloud to execute a numerical integration application. Here, we are presenting an analysis of best practices and possible optimizations regarding the elasticity and HPC pair. Considering the results, we observed that the maximum threshold influences the application time more than the minimum one. We concluded that threshold values close to 100% of CPU load are directly related to a weaker reactivity, postponing resource reconfiguration when its activation in advance could be pertinent for reducing the application runtime.
Resumo:
In a general purpose cloud system efficiencies are yet to be had from supporting diverse applications and their requirements within a storage system used for a private cloud. Supporting such diverse requirements poses a significant challenge in a storage system that supports fine grained configuration on a variety of parameters. This paper uses the Ceph distributed file system, and in particular its global parameters, to show how a single changed parameter can effect the performance for a range of access patterns when tested with an OpenStack cloud system.
Resumo:
Industry 4.0 refers to the 4th industrial revolution and at its bases, we can see the digitalization and the automation of the assembly line. The whole production process has improved and evolved thanks to the advances made in networking, and AI studies, which include of course machine learning, cloud computing, IoT, and other technologies that are finally being implemented into the industrial scenario. All these technologies have in common a need for faster, more secure, robust, and reliable communication. One of the many solutions for these demands is the use of mobile communication technologies in the industrial environment, but which technology is better suited for these demands? Of course, the answer isn’t as simple as it seems. The 4th industrial revolution has a never seen incomparable potential with respect to the previous ones, every factory, enterprise, or company have different network demands, and even in each of these infrastructures, the demands may diversify by sector, or by application. For example, in the health care industry, there may be e a need for increased bandwidth for the analysis of high-definition videos or, faster speeds in order to have analytics occur in real-time, and again another application might be higher security and reliability to protect patients’ data. As seen above, choosing the right technology for the right environment and application, considers many things, and the ones just stated are but a speck of dust with respect to the overall picture. In this thesis, we will investigate a comparison between the use of two of the available technologies in use for the industrial environment: Wi-Fi 6 and 5G Private Networks in the specific case of a steel factory.
Resumo:
Il serverless é un paradigma del cloud computing al giorno d’oggi sempre più diffuso; si basa sulla scrittura di funzioni stateless in quanto le attività relative alla loro manutenzione e scalabilità fanno capo al provider dei servizi cloud. Lo sviluppatore deve quindi solamente concentrarsi sulla creazione del prodotto. Questo lavoro si apre con un’analisi del cloud computing introducendo i principali modelli di applicazione, passando dal parlare di servizi cloud, con le varie sottocategorie e i relativi utilizzi per poi arrivare a parlare di serverless. Si é scelto di focalizzarsi sulla piattaforma Google con la suite: Google Cloud Platform. In particolare, si parlerà di Google Cloud Functions, una nuova offerta serverless della compagnia, di recente sviluppo e in continuo aggiornamento. Partiremo dalle prime release, analizzeremo l’ambiente di sviluppo, i casi d’uso, vantaggi, svantaggi, parleremo poi di portabilità e verranno mostrati alcuni esempi del loro utilizzo.
Resumo:
Cloud computing is increasingly being adopted in different scenarios, like social networking, business applications, scientific experiments, etc. Relying in virtualization technology, the construction of these computing environments targets improvements in the infrastructure, such as power-efficiency and fulfillment of users’ SLA specifications. The methodology usually applied is packing all the virtual machines on the proper physical servers. However, failure occurrences in these networked computing systems can induce substantial negative impact on system performance, deviating the system from ours initial objectives. In this work, we propose adapted algorithms to dynamically map virtual machines to physical hosts, in order to improve cloud infrastructure power-efficiency, with low impact on users’ required performance. Our decision making algorithms leverage proactive fault-tolerance techniques to deal with systems failures, allied with virtual machine technology to share nodes resources in an accurately and controlled manner. The results indicate that our algorithms perform better targeting power-efficiency and SLA fulfillment, in face of cloud infrastructure failures.