998 resultados para Printed organic electronics
Resumo:
Layered metal oxides provide a single-step route to sheathed superlattices of atomic layers of a variety of inorganic materials, where the interlayer spacing and overall layered structure forms the most critical feature in the nanomaterials’ growth and application in electronics, health, and energy storage. We use a combination of computer simulations and experiments to describe the atomic-scale structure, dynamics and energetics of alkanethiol-intercalated layered vanadium oxide-based nanostructures. Molecular dynamics (MD) simulations identify the unusual substrate-constrained packing of the alkanethiol surfactant chains along each V2O5 (010) face that combines with extensive interdigitation between chains on opposing faces to maximize three-dimensional packing in the interlayer regions. The findings are supported by high resolution electron microscopy analyses of synthesized alkanethiol-intercalated vanadium oxide nanostructures, and the preference for this new interdigitated model is clarified using a large set of MD simulations. This dependency stresses the importance of organic–inorganic interactions in layered material systems, the control of which is central to technological applications of flexible hybrid nanomaterials.
Resumo:
Discovering scalable routes to fabricate large scale electronic devices on flexible substrates has been the goal of the newly emerging field of flexible macroelectronics. Thin film transistors (TFTs) have been fabricated on flexible substrates by using organic small-molecule and polymer-based materials, or thin layers of crystalline inorganic semiconductors. Recently, films of carbon nanotubes have been proposed as electronic materials with superior electrical performance due to exceptional electrical and mechanical properties of single-walled carbon nanotubes (SWCNTs). In this thesis, some aspects of recent research efforts on integrating arrays of carbon nanotubes into macroelectronic devices are described. Carbon nanotube films have two major uses for flexible macroelectronics. The first approach uses carbon nanotube thin films as active semiconducting materials in the channel of flexible TFTs. Even though, high-performance carbon nanotube thin film transistors have been realized, the electronic non-homogeneity of the as-grown carbon nanotubes in the film limits the device performance for some applications. In this thesis, the application of electrochemical functionalization on carbon nanotube films to improve the electronic homogeneity of the film is described. The effect of the crystal quartz substrates on the growth rate of carbon nanotubes, and whether this can be used to sort out as-grown carbon nanotubes by electronic type is also discussed. Finally, I argue that high density carbon nanotube films can also be used as highly conducting stretchable interconnects on mechanically flexible electronic circuits. The sheet resistance and the nature of the buckling of carbon nanotube films on flexible substrates are discussed.
Resumo:
Dissertação de Mestrado, Engenharia Electrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014
Resumo:
The quality of human life depends to a large degree on the availability of energy. In recent years, photovoltaic technology has been growing extraordinarily as a suitable source of energy, as a consequence of the increasing concern over the impact of fossil fuels on climate change. Developing affordable and highly efficiently photovoltaic technologies is the ultimate goal in this direction. Dye-sensitized solar cells (DSSCs) offer an efficient and easily implementing technology for future energy supply. Compared to conventional silicon solar cells, they provide comparable power conversion efficiency at low material and manufacturing costs. In addition, DSSCs are able to harvest low-intensity light in diffuse illumination conditions and then represent one of the most promising alternatives to the traditional photovoltaic technology, even more when trying to move towards flexible and transparent portable devices. Among these, considering the increasing demand of modern electronics for small, portable and wearable integrated optoelectronic devices, Fibre Dye-Sensitized Solar Cells (FDSSCs) have gained increasing interest as suitable energy provision systems for the development of the next-generation of smart products, namely “electronic textiles” or “e-textiles”. In this thesis, several key parameters towards the optimization of FDSSCs based on inexpensive and abundant TiO2 as photoanode and a new innovative fully organic sensitizer were studied. In particular, the effect of various FDSSCs components on the device properties pertaining to the cell architecture in terms of photoanode oxide layer thickness, electrolytic system, cell length and electrodes substrates were examined. The photovoltaic performances of the as obtained FDSSCs were fully characterized. Finally, the metal part of the devices (wire substrate) was substituted with substrates suitable for the textile industry as a fundamental step towards commercial exploitation.
Resumo:
Conductive polymers (CPS) are a class of carbon-based materials, capable of conducting electric current, characterized by metallic properties in combination with the intrinsic properties of conventional polymers. The structural model of the CP consists of a system of double π-conjugated on the backbone (polyene structure) which can easily undergo reversible doping reaching a wide range of conductivity. Thanks to their versatility and peculiar properties (mechanical flexibility, biocompatibility, transparency, ease of chemical functionalization, high thermal stability), CPS have revolutionized the science of materials giving rise to Organic Bioelectronics, the discipline resulting from the convergence between biology and electronics. The Poly (3,4-ethylenedioxythiophene) : poly (styrenesulfonate) (PEDOT: PSS), complex polyelectrolyte, in the form of a thin film, currently represents the reference standard in applications concerning Bioelectronics. In this project, two types of electrochemical sensors ink-jet printed on a flexible polymeric substrate, the polyethylene terephthalate, have been developed and characterized. The Drop on Demand (DOD) inkjet technology has allowed to control the positioning of fluid volumes of the order of picoliters with an accuracy of ± 25μm. This resulted in the creation of amperometric sensors and organic electrochemical transistors (OECT) all-PEDOT: PSS with high reproducibility. The sensors have been used for the determination of Ascorbic Acid (AA) which is currently considered an important benchmark in the field of sensors. In Cyclic Voltammetry, the amperometric sensor has detected AA at potentials less than 0.2 V vs. SCE thanks to the electrocatalytic properties of the PEDOT: PSS. On the other hand, the OECT detected AA concentrations equal to 10 nanomolar in Chronoamperometry. Furthermore, a promising new generation of all-printed OECTS, consisting of silver metal contacts, has been created. Preliminary results are presented.
Resumo:
Growth in the development and production of engineered nanoparticles (ENPs) in recent years has increased the potential for interactions of these nanomaterials with aquatic and terrestrial environments. Carefully designed studies are therefore required in order to understand the fate, transport, stability, and toxicity of nanoparticles. Natural organic matter (NOM), such as the humic substances found in water, sediment, and soil, is one of the substances capable of interacting with ENPs. This review presents the findings of studies of the interaction of ENPs and NOM, and the possible effects on nanoparticle stability and the toxicity of these materials in the environment. In addition, ENPs and NOM are utilized for many different purposes, including the removal of metals and organic compounds from effluents, and the development of new electronic sensors and other devices for the detection of active substances. Discussion is therefore provided of some of the ways in which NOM can be used in the production of nanoparticles. Although there has been an increase in the number of studies in this area, further progress is needed to improve understanding of the dynamic interactions between ENPs and NOM.
Resumo:
Some bacteria common in anaerobic digestion process can ferment a broad variety of organic compounds to organic acids, alcohols, and hydrogen, which can be used as biofuels. Researches are necessary to control the microbial interactions in favor of the alcohol production, as intermediary products of the anaerobic digestion of organic compounds. This paper reports on the effect of buffering capacity on the production of organic acids and alcohols from wastewater by a natural mixed bacterial culture. The hypothesis tested was that the increase of the buffering capacity by supplementation of sodium bicarbonate in the influent results in benefits for alcohol production by anaerobic fermentation of wastewater. When the influent was not supplemented with sodium bicarbonate, the chemical oxygen demand (COD)-ethanol and COD-methanol detected in the effluent corresponded to 22.5 and 12.7 % of the COD-sucrose consumed. Otherwise, when the reactor was fed with influent containing 0.5 g/L of sodium bicarbonate, the COD-ethanol and COD-methanol were effluents that corresponded to 39.2 and 29.6 % of the COD-sucrose consumed. Therefore, the alcohol production by supplementation of the influent with sodium bicarbonate was 33.6 % higher than the fermentation of the influent without sodium bicarbonate.
Resumo:
In order to characterize the composition of the main urban air organic compounds in the megacity of Sao Paulo, analysis of samples collected during the winter of 2003 downtown was carried out. The samplings were performed on the roof of a building in the commercial center of São Paulo. Hydrocarbons and carbonyls compounds were collected on August 4, 5 and 6. Comparing to previous data, the concentration of hydrocarbons presented no decrease in the concentration, except for the aldehydes, which decreased when compared to previous data. Among the HCs species analyzed, the highest concentrations observed were those of toluene (7.5 ± 3.4 ppbv), n-decane (3.2 ± 2.0 ppbv), benzene (2.7 ± 1.4 ppbv) and 1,3,5-trimethylbenzene (2.2 ± 1.5 ppbv).
Resumo:
A modified method for the calculation of the normalized faradaic charge (q fN) is proposed. The method involves the simulation of an oxidation process, by cyclic voltammetry, by employing potentials in the oxygen evolution reaction region. The method is applicable to organic species whose oxidation is not manifested by a defined oxidation peak at conductive oxide electrodes. The variation of q fN for electrodes of nominal composition Ti/RuX Sn1-X O2 (x = 0.3, 0.2 and 0.1), Ti/Ir0.3Ti0.7O2 and Ti/Ru0.3Ti0.7O2 in the presence of various concentrations of formaldehyde was analyzed. It was observed that electrodes containing SnO2 are the most active for formaldehyde oxidation. Subsequently, in order to test the validity of the proposed model, galvanostatic electrolyses (40 mA cm-2) of two different formaldehyde concentrations (0.10 and 0.01 mol dm-3) were performed. The results are in agreement with the proposed model and indicate that this new method can be used to determine the relative activity of conductive oxide electrodes. In agreement with previous studies, it can be concluded that not only the nature of the electrode material, but also the organic species in solution and its concentration are important factors to be considered in the oxidation of organic compounds.
Resumo:
Many routes for extracting silica from rice hulls are based on direct calcining. These methods, though, often produce silica contaminated with inorganic impurities. This work presents the study of a strategy for obtaining silica from rice hulls with a purity level adequate for applications in electronics. The technique is based on two leaching steps, using respectively aqua regia and Piranha solutions, which extract the organic matrix and inorganic impurities. The material was characterized by Fourier-transform infrared spectroscopy (FTIR), powder x-ray diffraction (XRD), x-ray fluorescence (XRF), scanning electron microscopy (SEM), particle size analysis by laser diffraction (LPSA) and thermal analysis.
Resumo:
This work describes a photo-reactor to perform in line degradation of organic compounds by photo-Fenton reaction using Sequential Injection Analysis (SIA) system. A copper phthalocyanine-3,4',4²,4²¢-tetrasulfonic acid tetrasodium salt dye solution was used as a model compound for the phthalocyanine family, whose pigments have a large use in automotive coatings industry. Based on preliminary tests, 97% of color removal was obtained from a solution containing 20 µmol L-1 of this dye.
Resumo:
This study evaluated levels of digestible lysine and organic zinc for male Ross strain broilers from 1 to 11 days of age. It was used 1,050 chicks distributed in randomized block design, in 5 × 2 factorial scheme, with seven repetitions of 15 birds per experimental unit. The dietary concentrations of digestible lysine were 0.90; 1.00; 1.10; 1.20; and 1.40% combined with 43 and 253 ppm zinc chelate. The diets contained 2,965 ± 18 kcal/kg of apparent metabolizable energy (AME) and 21.48 ± 0.18% of CP. It was determined chemical composition, protein, lipid, mineral and water depositions on carcass and empty body. There was no interaction among the factors digestible lysine and organic zinc. Effect of zinc concentration increase was observed on greatest deposition of body fat, indicating that there is interference in lipid metabolism of the birds in the studied phase. The most pronounced effects resulted from the dietary inclusion of lysine. There was a linear effect on reconstituted body weight as a response to the increase of dietary lysine, which suggests equal or superior requirement to the greatest studied level. However, the deposition of water and protein on the carcass had a quadratic increase, characterizing higher muscle mass accumulation up to the levels 1.25 and 1.27 of this amino acid in the diet. Considering the studied strain, broiler chickens from the first to the 11th days of age require 1.28 ± 0.01% of digestible lysine, according to the deposition of muscle mass.
Resumo:
Land cover change constitutes one of main way of alteration of soil organic matter in both quantitative and qualitative terms. The goal of this study was to compare the carbon stock and the isotopic signature of the organic matter in the soil of areas with different land use,covered with forest and grass (pasture). The study area is located at Sorocaba, SP, Brazil. Using un-deformed soil samples, we measured the carbon content and bulk density. The isotopic signature of soil carbon was determined through the analysis of isotopic ratio (12)C/(13)C. The pasture soil stocks 48% less carbon than the soil covered by natural forest. The isotopic signature indicated that 42.2% of organic matter of the soil covered by pasture is originated from grasses. This characterizes a highly degradation of organic matter in the environment, both quantitatively and qualitatively. Hence, some guidelines of recuperation are described in order to restore the soil organic matter, structure and porosity.
Resumo:
Introduction. We present some protocols aiming at partially characterizing banana fruit quality through measurement of some key biochemical parameters. The principle, key advantages, starting plant material, time required and expected results are presented. Materials and methods. This part describes the required laboratory materials and the steps necessary for achieving four protocols making it possible to measure sugar, organic acids and free ACC contents, and in vitro ACC oxidase activity. Results. Standard results obtained by using the protocols described are presented in the figures.