908 resultados para Prey defense
Resumo:
Understanding and predicting the outcomes of biological invasions is challenging where multiple invader and native species interact. We hypothesize that antagonistic interactions between invaders and natives could divert their impact on subsequent invasive species, thus facilitating coexistence. From field data, we found that, when existing together in freshwater sites, the native amphipod Gammarus duebeni celticus and a previous invader G. pulex appear to facilitate the establishment of a second invader, their shared prey Crangonyx pseudogracilis. Indeed, the latter species was rarely found at sites where each Gammarus species was present on its own. Experiments indicated that this may be the result of G. d. celticus and G. pulex engaging in more intraguild predation (IGP) than cannibalism; when the ‘enemy’ of either Gammarus species was present, that is, the other Gammarus species, C. pseudogracilis significantly more often escaped predation. Thus, the presence of mutual enemies and the stronger inter- than intraspecific interactions they engage in can facilitate other invaders. With some invasive species such as C. pseudogracilis having no known detrimental effects on native species, and indeed having some positive ecological effects, we also conclude that some invasions could promote biodiversity and ecosystem functioning.
Resumo:
Epidermal keratinocytes produce and secrete antimicrobial peptides (AMPs) that subsequently form a chemical shield on the skin surface. Cathelicidins are one family of AMPs in skin with various further immune functions. Consequently, dysfunction of these peptides has been implicated in the pathogenesis of inflammatory skin disease. In particular, the cathelicidin LL-37 is overexpressed in inflamed skin in psoriasis, binds to extracellular self-DNA released from dying cells and converts self-DNA in a potent stimulus for plasmacytoid dendritic cells (pDCs). Subsequently, pDCs secrete type I interferons and trigger an auto-inflammatory cascade. Paradoxically, therapies targeting the vitamin D pathway such as vitamin D analogues or UVB phototherapy ameliorate cutaneous inflammation in psoriasis but strongly induce cathelicidin expression in skin at the same time. Current evidence now suggests that self-DNA present in the cytosol of keratinocytes is also pro-inflammatory active and triggers IL-1β secretion in psoriatic lesions through the AIM2 inflammasome. This time, however, binding of LL-37 to self-DNA neutralizes DNA-mediated inflammation. Hence, cathelicidin LL-37 shows contrasting roles in skin inflammation in psoriasis and might serve as a target for novel therapies for this chronic skin disease.
Resumo:
This article assesses the effect that leveraging civilian defense force militias has on the dynamics of violence in civil war. We argue that the delegation of security and combat roles to local civilians shifts the primary targets of insurgent violence toward civilians, in an attempt to deter future defections, and re-establish control over the local population. This argument is assessed through an analysis of the Sunni Awakening and ancillary Sons of Iraq paramilitary program. The results suggest that at least in the Al-Anbar province of Iraq, the utilization of the civilian population in counterinsurgent roles had significant implications for the targets of insurgent violence.
Resumo:
BACKGROUND: Evolution equipped Bdellovibrio bacteriovorus predatory bacteria to invade other bacteria, digesting and replicating, sealed within them thus preventing nutrient-sharing with organisms in the surrounding environment. Bdellovibrio were previously described as "obligate predators" because only by mutations, often in gene bd0108, are 1 in ~1x10(7) of predatory lab strains of Bdellovibrio converted to prey-independent growth. A previous genomic analysis of B. bacteriovorus strain HD100 suggested that predatory consumption of prey DNA by lytic enzymes made Bdellovibrio less likely than other bacteria to acquire DNA by lateral gene transfer (LGT). However the Doolittle and Pan groups predicted, in silico, both ancient and recent lateral gene transfer into the B. bacteriovorus HD100 genome.
RESULTS: To test these predictions, we isolated a predatory bacterium from the River Tiber- a good potential source of LGT as it is rich in diverse bacteria and organic pollutants- by enrichment culturing with E. coli prey cells. The isolate was identified as B. bacteriovorus and named as strain Tiberius. Unusually, this Tiberius strain showed simultaneous prey-independent growth on organic nutrients and predatory growth on live prey. Despite the prey-independent growth, the homolog of bd0108 did not have typical prey-independent-type mutations. The dual growth mode may reflect the high carbon content of the river, and gives B. bacteriovorus Tiberius extended non-predatory contact with the other bacteria present. The HD100 and Tiberius genomes were extensively syntenic despite their different cultured-terrestrial/freshly-isolated aquatic histories; but there were significant differences in gene content indicative of genomic flux and LGT. Gene content comparisons support previously published in silico predictions for LGT in strain HD100 with substantial conservation of genes predicted to have ancient LGT origins but little conservation of AT-rich genes predicted to be recently acquired.
CONCLUSIONS: The natural niche and dual predatory, and prey-independent growth of the B. bacteriovorus Tiberius strain afforded it extensive non-predatory contact with other marine and freshwater bacteria from which LGT is evident in its genome. Thus despite their arsenal of DNA-lytic enzymes; Bdellovibrio are not always predatory in natural niches and their genomes are shaped by acquiring whole genes from other bacteria.
Resumo:
Bdellovibrio bacteriovorus grows in one of two ways: either (i) predatorily [in a host-dependent (HD) manner], when it invades the periplasm of another Gram-negative bacterium, exporting into the prey co-ordinated waves of soluble enzymes using the prey cell contents for growth; or (ii) in a host-independent (HI) manner, when it grows (slowly) axenically in rich media. Periplasmic invasion potentially exposes B. bacteriovorus to extremes of pH and exposes the need to scavenge electron donors from prey electron transport components by synthesis of metalloenzymes. The twin-arginine transport system (Tat) in other bacteria transports folded metalloenzymes and the B. bacteriovorus genome encodes 21 potential Tat-transported substrates and Tat transporter proteins TatA1, TatA2 and TatBC. GFP tagging of the Tat signal peptide from Bd1802, a high-potential iron-sulfur protein (HiPIP), revealed it to be exported into the prey bacterium during predatory growth. Mutagenesis showed that the B. bacteriovorus tatA2 and tatC gene products are essential for both HI and HD growth, despite the fact that they partially complement (in SDS resistance assays) the corresponding mutations in Escherichia coli where neither TatA nor TatC are essential for life. The essentiality of B. bacteriovorus TatA2 was surprising given that the B. bacteriovorus genome encodes a second tatA homologue, tatA1. Transcription of tatA1 was found to be induced upon entry to the bdelloplast, and insertional inactivation of tatA1 showed that it significantly slowed the rates of both HI and HD growth. B. bacteriovorus is one of a few bacterial species that are reliant on a functional Tat system and where deletion of a single tatA1 gene causes a significant growth defect(s), despite the presence of its tatA2 homologue.
Resumo:
Bdellovibrio bacteriovorus is a famously fast, flagellate predatory bacterium, preying upon Gram-negative bacteria in liquids; how it interacts with prey on surfaces such as in medical biofilms is unknown. Here we report that Bdellovibrio bacteria "scout" for prey bacteria on solid surfaces, using slow gliding motility that is present in flagellum-negative and pilus-negative strains.
Resumo:
The predatory bacterium Bdellovibrio bacteriovorus uses flagellar motility to locate regions rich in Gram-negative prey bacteria, colliding and attaching to prey and then ceasing flagellar motility. Prey are then invaded to form a "bdelloplast" in a type IV pilus-dependent process, and prey contents are digested, allowing Bdellovibrio growth and septation. After septation, Bdellovibrio flagellar motility resumes inside the prey bdelloplast prior to its lysis and escape of Bdellovibrio progeny. Bdellovibrio can also grow slowly outside prey as long flagellate host-independent (HI) cells, cultured on peptone-rich media. The B. bacteriovorus HD100 genome encodes three pairs of MotAB flagellar motor proteins, each of which could potentially form an inner membrane ion channel, interact with the FliG flagellar rotor ring, and produce flagellar rotation. In 2004, Flannagan and coworkers (R. S. Flannagan, M. A. Valvano, and S. F. Koval, Microbiology 150:649-656, 2004) used antisense RNA and green fluorescent protein (GFP) expression to downregulate a single Bdellovibrio motA gene and reported slowed release from the bdelloplast and altered motility of the progeny. Here we inactivated each pair of motAB genes and found that each pair contributes to motility, both predatorily, inside the bdelloplast and during HI growth; however, each pair was dispensable, and deletion of no pair abolished motility totally. Driving-ion studies with phenamil, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and different pH and sodium conditions indicated that all Mot pairs are proton driven, although the sequence similarities of each Mot pair suggests that some may originate from halophilic species. Thus, Bdellovibrio is a "dedicated motorist," retaining and expressing three pairs of mot genes.
Resumo:
The predatory bacterium Bdellovibrio bacteriovorus swims rapidly by rotation of a single, polar flagellum comprised of a helical filament of flagellin monomers, contained within a membrane sheath and powered by a basal motor complex. Bdellovibrio collides with, enters and replicates within bacterial prey, a process previously suggested to firstly require flagellar motility and then flagellar shedding upon prey entry. Here we show that flagella are not always shed upon prey entry and we study the six fliC flagellin genes of B. bacteriovorus, finding them all conserved and expressed in genome strain HD100 and the widely studied lab strain 109J. Individual inactivation of five of the fliC genes gave mutant Bdellovibrio that still made flagella, and which were motile and predatory. Inactivation of the sixth fliC gene abolished normal flagellar synthesis and motility, but a disordered flagellar sheath was still seen. We find that this non-motile mutant was still able to predate when directly applied to lawns of YFP-labelled prey bacteria, showing that flagellar motility is not essential for prey entry but important for efficient encounters with prey in liquid environments.
Resumo:
Parasites and pathogens are ubiquitous and act as an important selection pressure on animals. Here, drawing primarily on our own research, mostly on insects, we illustrate how host-parasite interactions have played a role in the evolution of a range of phenomena, including animal coloration, social behavior, foraging ecology, sexual selection, and life-history tradeoffs, as well as how variation in host behavior and ecology can drive variation in parasitism risk and host allocation of resources to immunity and other antiparasite defenses. We conclude by identifying key areas for future study.
Resumo:
This article examines how civilian defense militias shape violence during civil war. We define civilian defense forces as a sedentary and defensive form of pro-government militia that incumbents often use to harness the participation of civilians during a counterinsurgency campaign. We argue that civilian defense forces reduce the problem of insurgent identification. This leads to a reduction in state violence against civilians. However, we also claim that these actors undermine civilian support for insurgents, which leads to an increase in rebel violence against civilians and overall intensification of conflict. A statistical analysis of government and rebel violence against civilians from 1981 to 2005, and a qualitative assessment of a civilian defense force operating in Iraq from 2005 to 2009, offer strong support for our theoretical claims. These findings provide further insight into pro-government militias and their effects on violence. They also have wider ethical implications for the use of civilian collaborators during civil war.
Resumo:
During benthic cultivation Mytilus edulis (blue mussels) are subject to predation pressure from a number of predators including Carcinus maenas (shore crabs). This predator can be responsible for substantial losses of mussels from the fishery and a full understanding of the predator–prey relationship between M. edulis and C. maenas is required to ensure attempts that reduce predatory pressure and subsequent commercial loss are successful. Whilst much work has examined the prey–predator size relationships between C. maenas and M. edulis, far less research has investigated how stress, such as periods of extended aerial exposure, may affect these relationships. We tested whether profit in terms of calories gained by crabs consuming mussels stressed by aerial exposure for 48 h differed from that of mussels at ambient conditions and whether being stressed affected the mussel's likelihood of predation. We also tested whether the size relationship between predators and their prey differed when mussels were stressed. We found that the profitability of prey (calories gained per second of handling time) did not vary between stressed and unstressed mussels. Handling times for stressed and unstressed mussels were similar, even when crabs were presented with mussels of the maximum size that they are able to consume. Small crabs were more likely to reject a mussel of preferred size if it was unstressed, suggesting that crabs may be able to assess that these mussels would require extra effort to break into and consume. Our findings suggest that the predator–prey relationship between mussels and crabs is not altered when mussels are stressed. C. maenas remains a voracious predator and regardless of the condition of mussels laid on commercial beds there is a need to control this predator in attempt to reduce losses in the benthic fishery.
Resumo:
Public concern over biodiversity loss is often rationalized as a threat to ecosystem functioning, but biodiversity-ecosystem functioning (BEF) relations are hard to empirically quantify at large scales. We use a realistic marine food-web model, resolving species over five trophic levels, to study how total fish production changes with species richness. This complex model predicts that BEF relations, on average, follow simple Michaelis-Menten curves when species are randomly deleted. These are shaped mainly by release of fish from predation, rather than the release from competition expected from simpler communities. Ordering species deletions by decreasing body mass or trophic level, representing 'fishing down the food web', accentuates prey-release effects and results in unimodal relationships. In contrast, simultaneous unselective harvesting diminishes these effects and produces an almost linear BEF relation, with maximum multispecies fisheries yield at approximate to 40% of initial species richness. These findings have important implications for the valuation of marine biodiversity.
Resumo:
Tesina elaborada para obtener el MPhil en la Universidad de Cambridge, Inglaterra, 1987
Resumo:
Tese dout., Aquacultura, Universidade do Algarve, 2007