940 resultados para Premixed Flame Ball
Resumo:
A generalized acoustic equation is used to identify the mechanisms driving combustion instability. The relationship between the unsteady rate of heat release and the flow is found to influence significantly the frequency of oscillation. A kinematic flame model is reviewed and used to describe the unsteady combustion in a premixed ducted flame and in a typical lean premixed industrial gas turbine. Comparison is made between theory and experiment. | A generalized acoustic equation is used to identify the mechanisms driving combustion instability. The relationship between the unsteady rate of heat release and the flow is found to influence significantly the frequency of oscillation. A kinematic flame model is reviewed and used to describe the unsteady combustion in a premixed ducted flame and in a typical lean premixed industrial gas turbine. Comparison is made between theory and experiment.
Effects of Lewis number on turbulent scalar transport and its modelling in turbulent premixed flames
Resumo:
The probabilistic nature of ignition of premixed and non-premixecl turbulent opposed-jet flames has been examined and the flame structures following ignition have been visualized directly and with OH-PLIF. It has been found that high bulk velocities decrease the ignition probability in all locations and for all flames. Ignition is sometimes possible even in locations where there is negligible probability of finding flammable mixture and is sometimes impossible in locations with high probability of flammable fluid. The edge flame propagation speed is also estimated.
Resumo:
The effects of turbulent Reynolds number on the statistical behaviour of the displacement speed have been studied using three-dimensional Direct Numerical Simulation of statistically planar turbulent premixed flames. The probability of finding negative values of the displacement speed is found to increase with increasing turbulent Reynolds number when the Damkhler number is held constant. It has been shown that the statistical behaviour of the Surface Density Function, and its strain rate and curvature dependence, plays a key role in determining the response of the different components of displacement speed. Increasing the turbulent Reynolds number is shown to reduce the strength of the correlations between tangential strain rate and dilatation rate with curvature, although the qualitative nature of the correlations remains unaffected. The dependence of displacement speed on strain rate and curvature is found to weaken with increasing turbulent Reynolds number when either Damkhler or Karlovitz number is held constant, but the qualitative nature of the correlation remains unaltered. The implications of turbulent Reynolds number effects in the context of Flame Surface Density (FSD) modelling have also been addressed, with emphasis on the influence of displacement speed on the curvature and propagation terms in the FSD balance equation. © 2011 Nilanjan Chakraborty et al.
Resumo:
The statistical behaviour of turbulent kinetic energy transport in turbulent premixed flames is analysed using data from three-dimensional Direct Numerical Simulation (DNS) of freely propagating turbulent premixed flames under decaying turbulence. For flames within the corrugated flamelets regime, it is observed that turbulent kinetic energy is generated within the flame brush. By contrast, for flames within the thin reaction zones regime it has been found that the turbulent kinetic energy decays monotonically through the flame brush. Similar trends are observed also for the dissipation rate of turbulent kinetic energy. Within the corrugated flamelets regime, it is demonstrated that the effects of the mean pressure gradient and pressure dilatation within the flame are sufficient to overcome the effects of viscous dissipation and are responsible for the observed augmentation of turbulent kinetic energy in the flame brush. In the thin reaction zones regime, the effects of the mean pressure gradient and pressure dilatation terms are relatively much weaker than those of viscous dissipation, resulting in a monotonic decay of turbulent kinetic energy across the flame brush. The modelling of the various unclosed terms of the turbulent kinetic energy transport equation has been analysed in detail. The predictions of existing models are compared with corresponding quantities extracted from DNS data. Based on this a-priori DNS assessment, either appropriate models are identified or new models are proposed where necessary. It is shown that the turbulent flux of turbulent kinetic energy exhibits counter-gradient (gradient) transport wherever the turbulent scalar flux is counter-gradient (gradient) in nature. A new model has been proposed for the turbulent flux of turbulent kinetic energy, and is found to capture the qualitative and quantitative behaviour obtained from DNS data for both the corrugated flamelets and thin reaction zones regimes without the need to adjust any of the model constants. © 2010 Springer Science+Business Media B.V.
Resumo:
The conditional moment closure (CMC) method has been successfully applied to various non-premixed combustion systems in the past, but its application to premixed flames is not fully tested and validated. The main difficulty is associated with the modeling of conditional scalar dissipation rate of the conditioning scalar, the progress variable. A simple algebraic model for the conditional dissipation rate is validated using DNS results of a V-flame. This model along with the standard k- turbulence modeling is used in computations of stoichiometric pilot stabilized Bunsen flames using the RANS-CMC method. A first-order closure is used for the conditional mean reaction rate. The computed non reacting and reacting scalars are in reasonable agreement with the experimental measurements and are consistent with earlier computations using flamelets and transported PDF methods. Sensitivity to chemical kinetic mechanism is also assessed. The results suggest that the CMC may be applied across the regimes of premixed combustion.