875 resultados para Predator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Movements of wide-ranging top predators can now be studied effectively using satellite and archival telemetry. However, the motivations underlying movements remain difficult to determine because trajectories are seldom related to key biological gradients, such as changing prey distributions. Here, we use a dynamic prey landscape of zooplankton biomass in the north-east Atlantic Ocean to examine active habitat selection in the plankton-feeding basking shark Cetorhinus maximus. The relative success of shark searches across this landscape was examined by comparing prey biomass encountered by sharks with encounters by random-walk simulations of ‘model’ sharks. Movements of transmitter-tagged sharks monitored for 964 days (16754km estimated minimum distance) were concentrated on the European continental shelf in areas characterized by high seasonal productivity and complex prey distributions. We show movements by adult and sub-adult sharks yielded consistently higher prey encounter rates than 90% of random-walk simulations. Behavioural patterns were consistent with basking sharks using search tactics structured across multiple scales to exploit the richest prey areas available in preferred habitats. Simple behavioural rules based on learned responses to previously encountered prey distributions may explain the high performances. This study highlights how dynamic prey landscapes enable active habitat selection in large predators to be investigated from a trophic perspective, an approach that may inform conservation by identifying critical habitat of vulnerable species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fossil deposit excavated from the floor of Kids Cave, West Coast, South Island, New Zealand, is interpreted as having been primarily accumulated by New Zealand falcon Falco novaeseelandiae, with some contribution by Haast's eagle Harpagornis moorei. The fauna is rich: 3699 bones represented 41 bird species, two frog species, unspecified geckoes and skinks, and one bat species. Fossil deposition was mainly within the Last Glacial Maximum from about 22,000 cal yr bp to about 15,000 cal yr bp, with a marked change in sediment characteristics at the onset of the LGM's coldest period. Chronological control is given by three Uranium-series dates for a speleothem and radiocarbon AMS dating of four avian eggshell samples and one bone. The fauna is the first extensive predator accumulation of LGM age described from the West Coast of the South Island, and it indicates a palaeoenvironment of a mosaic of shrublands with forest patches. The onset of the coldest part of the LGM (Aurora 3 glacial advance, 19,500 - 19,000 cal yrs bp) saw marked climate cooling/drying affecting the site, but the avifauna indicates that although open-country taxa became more common in this period, some forest persisted nearby throughout the remainder of the LGM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to wide range of interest in use of bio-economic models to gain insight into the scientific management of renewable resources like fisheries and forestry,variational iteration method (VIM) is employed to approximate the solution of the ratio-dependent predator-prey system with constant effort prey harvesting.The results are compared with the results obtained by Adomian decomposition method and reveal that VIM is very effective and convenient for solving nonlinear differential equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activation-deactivation pseudo-equilibrium coefficient Qt and constant K0 (=Qt x PaT1,t = ([A1]x[Ox])/([T1]x[T])) as well as the factor of activation (PaT1,t) and rate constants of elementary steps reactions that govern the increase of Mn with conversion in controlled cationic ring-opening polymerization of oxetane (Ox) in 1,4-dioxane (1,4-D) and in tetrahydropyran (THP) (i.e. cyclic ethers which have no homopolymerizability (T)) were determined using terminal-model kinetics. We show analytically that the dynamic behavior of the two growing species (A1 and T1) competing for the same resources (Ox and T) follows a Lotka-Volterra model of predator-prey interactions. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel predator introductions are thought to have a high impact on native prey, especially in freshwater systems. Prey may fail to recognize predators as a threat, or show inappropriate or ineffective responses. The ability of prey to recognize and respond appropriately to novel predators may depend on the prey’s use of general or specific cues to detect predation threats.We used laboratory experiments to examine the ability of three native Everglades prey species (Eastern mosquitofish, flagfish and riverine grass shrimp) to respond to the presence, as well as to the chemical and visual cues of a native predator (warmouth) and a recentlyintroduced non-native predator (African jewelfish). We used prey from populations that had not previously encountered jewelfish. Despite this novelty, the native warmouth and nonnative jewelfish had overall similar predatory effects, except on mosquitofish, which suffered higher warmouth predation. When predators were present, the three prey taxa showed consistent and strong responses to the non-native jewelfish, which were similar in magnitude to the responses exhibited to the native warmouth. When cues were presented, fish prey responded largely to chemical cues, while shrimp showed no response to either chemical or visual cues. Overall, responses by mosquitofish and flagfish to chemical cues indicated low differentiation among cue types, with similar responses to general and specific cues. The fact that antipredator behaviours were similar toward native and non-native predators suggests that the susceptibility to a novel fish predator may be similar to that of native fishes, and prey may overcome predator novelty, at least when predators are confamilial to other common and longer-established non-native threats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used longline fishing to determine the effects of distance from the ocean, season, and short-term variation in abiotic conditions on the abundance of juvenile bull sharks (Carcharhinus leucas) in an estuary of the Florida Everglades, U.S.A. Logistic regression revealed that young-of-the-year sharks were concentrated at a protected site 20 km upstream and were present in greater abundance when dissolved oxygen (DO) levels were high. For older juvenile sharks (age 1+), DO levels had the greatest influence on catch probabilities followed by distance from the ocean; they were most likely to be caught at sites with .3.5 mg L21 DO and on the main branch of the river 20 km upstream. Salinity had a relatively small effect on catch rates and there were no seasonal shifts in shark distribution. Our results highlight the importance of considering DO as a possible driver of top predator distributions in estuaries, even in the absence of hypoxia. In Everglades estuaries hydrological drivers that affect DO levels (e.g., groundwater discharge, modification of primary productivity through nutrient fluxes) will be important in determining shark distributions, and the effects of planned ecosystem restoration efforts on bull sharks will not simply be mediated by changing salinity regimes and the location of the oligohaline zone. More generally, variation in DO levels could structure the nature and spatiotemporal pattern of top predator effects in the coastal Everglades, and other tropical and subtropical estuaries, because of interspecific variation in reliance on DO within the top predator guild.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-native predators may have negative impacts on native communities, and these effects may be dependent on interactions among multiple non-native predators. Sequential invasions by predators can enhance risk for native prey. Prey have a limited ability to respond to multiple threats since appropriate responses may conflict, and interactions with recent invaders may be novel. We examined predator–prey interactions among two non-native predators, a recent invader, the African jewelfish, and the longer-established Mayan cichlid, and a native Florida Everglades prey assemblage. Using field enclosures and laboratory aquaria, we compared predatory effects and antipredator responses across five prey taxa. Total predation rates were higher for Mayan cichlids, which also targeted more prey types. The cichlid invaders had similar microhabitat use, but varied in foraging styles, with African jewelfish being more active. The three prey species that experienced predation were those that overlapped in habitat use with predators. Flagfish were consumed by both predators, while riverine grass shrimp and bluefin killifish were eaten only by Mayan cichlids. In mixed predator treatments, we saw no evidence of emergent effects, since interactions between the two cichlid predators were low. Prey responded to predator threats by altering activity but not vertical distribution. Results suggest that prey vulnerability is affected by activity and habitat domain overlap with predators and may be lower to newly invading predators, perhaps due to novelty in the interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a framework for explaining variation in predator invasion success and predator impacts on native prey that integrates information about predator–prey naïveté, predator and prey behavioral responses to each other, consumptive and non-consumptive effects of predators on prey, and interacting effects of multiple species interactions. We begin with the ‘naïve prey’ hypothesis that posits that naïve, native prey that lack evolutionary history with non-native predators suffer heavy predation because they exhibit ineffective antipredator responses to novel predators. Not all naïve prey, however, show ineffective antipredator responses to novel predators. To explain variation in prey response to novel predators, we focus on the interaction between prey use of general versus specific cues and responses, and the functional similarity of non-native and native predators. Effective antipredator responses reduce predation rates (reduce consumptive effects of predators, CEs), but often also carry costs that result in non-consumptive effects (NCEs) of predators. We contrast expected CEs versus NCEs for non-native versus native predators, and discuss how differences in the relative magnitudes of CEs and NCEs might influence invasion dynamics. Going beyond the effects of naïve prey, we discuss how the ‘naïve prey’, ‘enemy release’ and ‘evolution of increased competitive ability’ (EICA) hypotheses are inter-related, and how the importance of all three might be mediated by prey and predator naïveté. These ideas hinge on the notion that non-native predators enjoy a ‘novelty advantage’ associated with the naïveté of native prey and top predators. However, non-native predators could instead suffer from a novelty disadvantage because they are also naïve to their new prey and potential predators. We hypothesize that patterns of community similarity and evolution might explain the variation in novelty advantage that can underlie variation in invasion outcomes. Finally, we discuss management implications of our framework, including suggestions for managing invasive predators, predator reintroductions and biological control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The frequency of extreme environmental events is predicted to increase in the future. Understanding the short- and long-term impacts of these extreme events on large-bodied predators will provide insight into the spatial and temporal scales at which acute environmental disturbances in top-down processes may persist within and across ecosystems. Here, we use long-term studies of movements and age structure of an estuarine top predator—juvenile bull sharks Carcharhinus leucas—to identify the effects of an extreme ‘cold snap’ from 2 to 13 January 2010 over short (weeks) to intermediate (months) time scales. Juvenile bull sharks are typically year-round residents of the Shark River Estuary until they reach 3 to 5 yr of age. However, acoustic telemetry revealed that almost all sharks either permanently left the system or died during the cold snap. For 116 d after the cold snap, no sharks were detected in the system with telemetry or captured during longline sampling. Once sharks returned, both the size structure and abundance of the individuals present in the nursery had changed considerably. During 2010, individual longlines were 70% less likely to capture any sharks, and catch rates on successful longlines were 40% lower than during 2006−2009. Also, all sharks caught after the cold snap were young-of-the-year or neonates, suggesting that the majority of sharks in the estuary were new recruits and several cohorts had been largely lost from the nursery. The longer-term impacts of this change in bull shark abundance to the trophic dynamics of the estuary and the importance of episodic disturbances to bull shark population dynamics will require continued monitoring, but are of considerable interest because of the ecological roles of bull sharks within coastal estuaries and oceans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predation, predation risk, and resource quality affect suites of prey traits that collectively impact individual fitness, population dynamics, and community structure. However, studies of multi-trophic level effects generally focus on a single prey trait, failing to capture trade-offs among suites of covarying traits that govern population responses and emergent community patterns. We used structural equation models (SEM) to summarize the non-lethal and lethal effects of crayfish, Procambarus fallax, and phosphorus (P) addition, which affected prey food quality (periphyton), on the interactive effects of behavioral, morphological, developmental, and reproductive traits of snails, Planorbella duryi. Univariate and multivariate analyses suggested trade-offs between production (growth, reproduction) and defense (foraging behavior, shell shape) traits of snails in response to non-lethal crayfish and P addition, but few lethal effects. SEM revealed that non-lethal crayfish effects indirectly limited per capita offspring standing stock by increasing refuge use, slowing individual growth, and inducing snails to produce thicker, compressed shells. The negative effects of non-lethal crayfish on snails were strongest with P addition; snails increased allocation to shell defense rather than growth or reproduction. However, compared to ambient conditions, P addition with non-lethal crayfish still yielded greater per capita offspring standing stock by speeding individual snail growth enabling them to produce more offspring that also grew faster. Increased refuge use in response to non-lethal crayfish led to a non-lethal trophic cascade that altered the spatial distribution of periphyton. Independent of crayfish effects, snails stimulated periphyton growth through nutrient regeneration. These findings illustrate the importance of studying suites of traits that reveal costs associated with inducing different traits and how expressing those traits impacts population and community level processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective conservation and management of top predators requires a comprehensive understanding of their distributions and of the underlying biological and physical processes that affect these distributions. The Mid-Atlantic Bight shelf break system is a dynamic and productive region where at least 32 species of cetaceans have been recorded through various systematic and opportunistic marine mammal surveys from the 1970s through 2012. My dissertation characterizes the spatial distribution and habitat of cetaceans in the Mid-Atlantic Bight shelf break system by utilizing marine mammal line-transect survey data, synoptic multi-frequency active acoustic data, and fine-scale hydrographic data collected during the 2011 summer Atlantic Marine Assessment Program for Protected Species (AMAPPS) survey. Although studies describing cetacean habitat and distributions have been previously conducted in the Mid-Atlantic Bight, my research specifically focuses on the shelf break region to elucidate both the physical and biological processes that influence cetacean distribution patterns within this cetacean hotspot.

In Chapter One I review biologically important areas for cetaceans in the Atlantic waters of the United States. I describe the study area, the shelf break region of the Mid-Atlantic Bight, in terms of the general oceanography, productivity and biodiversity. According to recent habitat-based cetacean density models, the shelf break region is an area of high cetacean abundance and density, yet little research is directed at understanding the mechanisms that establish this region as a cetacean hotspot.

In Chapter Two I present the basic physical principles of sound in water and describe the methodology used to categorize opportunistically collected multi-frequency active acoustic data using frequency responses techniques. Frequency response classification methods are usually employed in conjunction with net-tow data, but the logistics of the 2011 AMAPPS survey did not allow for appropriate net-tow data to be collected. Biologically meaningful information can be extracted from acoustic scattering regions by comparing the frequency response curves of acoustic regions to theoretical curves of known scattering models. Using the five frequencies on the EK60 system (18, 38, 70, 120, and 200 kHz), three categories of scatterers were defined: fish-like (with swim bladder), nekton-like (e.g., euphausiids), and plankton-like (e.g., copepods). I also employed a multi-frequency acoustic categorization method using three frequencies (18, 38, and 120 kHz) that has been used in the Gulf of Maine and Georges Bank which is based the presence or absence of volume backscatter above a threshold. This method is more objective than the comparison of frequency response curves because it uses an established backscatter value for the threshold. By removing all data below the threshold, only strong scattering information is retained.

In Chapter Three I analyze the distribution of the categorized acoustic regions of interest during the daytime cross shelf transects. Over all transects, plankton-like acoustic regions of interest were detected most frequently, followed by fish-like acoustic regions and then nekton-like acoustic regions. Plankton-like detections were the only significantly different acoustic detections per kilometer, although nekton-like detections were only slightly not significant. Using the threshold categorization method by Jech and Michaels (2006) provides a more conservative and discrete detection of acoustic scatterers and allows me to retrieve backscatter values along transects in areas that have been categorized. This provides continuous data values that can be integrated at discrete spatial increments for wavelet analysis. Wavelet analysis indicates significant spatial scales of interest for fish-like and nekton-like acoustic backscatter range from one to four kilometers and vary among transects.

In Chapter Four I analyze the fine scale distribution of cetaceans in the shelf break system of the Mid-Atlantic Bight using corrected sightings per trackline region, classification trees, multidimensional scaling, and random forest analysis. I describe habitat for common dolphins, Risso’s dolphins and sperm whales. From the distribution of cetacean sightings, patterns of habitat start to emerge: within the shelf break region of the Mid-Atlantic Bight, common dolphins were sighted more prevalently over the shelf while sperm whales were more frequently found in the deep waters offshore and Risso’s dolphins were most prevalent at the shelf break. Multidimensional scaling presents clear environmental separation among common dolphins and Risso’s dolphins and sperm whales. The sperm whale random forest habitat model had the lowest misclassification error (0.30) and the Risso’s dolphin random forest habitat model had the greatest misclassification error (0.37). Shallow water depth (less than 148 meters) was the primary variable selected in the classification model for common dolphin habitat. Distance to surface density fronts and surface temperature fronts were the primary variables selected in the classification models to describe Risso’s dolphin habitat and sperm whale habitat respectively. When mapped back into geographic space, these three cetacean species occupy different fine-scale habitats within the dynamic Mid-Atlantic Bight shelf break system.

In Chapter Five I present a summary of the previous chapters and present potential analytical steps to address ecological questions pertaining the dynamic shelf break region. Taken together, the results of my dissertation demonstrate the use of opportunistically collected data in ecosystem studies; emphasize the need to incorporate middle trophic level data and oceanographic features into cetacean habitat models; and emphasize the importance of developing more mechanistic understanding of dynamic ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent research has shown that exposure to elevated carbon dioxide (CO2) affects how fishes perceive their environment, affecting behavioral and cognitive processes leading to increased prey mortality. However, it is unclear if increased mortality results from changes in the dynamics of predator-prey interactions or due to prey increasing activity levels. Here we demonstrate that ocean pCO2 projected to occur by 2100 significantly effects the interactions of a predator-prey pair of common reef fish: the planktivorous damselfish Pomacentrus amboinensis and the piscivorous dottyback Pseudochromis fuscus. Prey exposed to elevated CO2 (880 µatm) or a present-day control (440 µatm) interacted with similarly exposed predators in a cross-factored design. Predators had the lowest capture success when exposed to elevated CO2 and interacting with prey exposed to present-day CO2. Prey exposed to elevated CO2 had reduced escape distances and longer reaction distances compared to prey exposed to present-day CO2 conditions, but this was dependent on whether the prey was paired with a CO2 exposed predator or not. This suggests that the dynamics of predator-prey interactions under future CO2 environments will depend on the extent to which the interacting species are affected and can adapt to the adverse effects of elevated CO2.