980 resultados para Power factor corrector


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes and describes a high power factor AC-AC converter for naval applications using Permanent Magnet Generator (PMG). The three-phase output voltages of the PMG vary from 260 Vrms (220 Hz) to 380 Vrms (360 Hz), depending on load conditions. The proposed converter consists of a Y-/ΔY power transformer, which provides electrical isolation between the PMG and remaining stages, and a twelve-pulse uncontrolled rectifier stage directly connected to a single-phase inverter stage, without the use of an intermediary DC-DC topology. This proposal results in more simplicity for the overall circuitry, assuring robustness, reliability and reduced costs. Furthermore, the multipulse rectifier stage is capable to provide high power factor and low total harmonic distortion for the input currents of the converter. The single-phase inverter stage was designed to operate with wide range of DC bus voltage, maintaining 120 Vrms, 60 Hz output. The control philosophy, implemented in a digital signal processor (DSP) which also contains protection routines, alows series connections between two identical converters, achieving 240 Vrms, 60 Hz total output voltage. Measured total harmonic distortion for the AC output voltage is lower than 2% and the input power factor is 0.93 at 3.6kW nominal load. © 2010 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multipulse rectifier topologies based on auto-connections or differential connections, are more and more applied as interface stages between the mains and power converters. These topologies are becoming increasingly attractive not only for robustness, but to mitigate many low order current harmonics in the utility, reducing the total harmonic distortion of the line currents (THDi) and increasing the power factor requirements. Unlike isolated connections (delta-wye, zigzag, etc.), when the differential transformer is employed, most of the energy required by the load is directly conducted through the windings. Thus, only a small fraction of the kVA is processed by the magnetic core. This feature increases the power density of the converter. This paper presents a mathematical model based on phasor diagrams, which results in a single expression able to merge all differential connections (wye and delta), for both step-up and step-down rectifiers for 12 or 18 pulses. The proposed family of converters can be designed for any relationship between the line input voltage and the DC voltage, unlike the conventional phase-shift voltage connections. An immediate application would be the retrofit, i.e. to replace a conventional rectifier with poor quality of the processed energy by the 12 or 18-pulse rectifiers with Wye or Delta-differential connections, keeping the original values for the input and load voltages. The simple and fast design procedure is developed and tested for a prototype rating 6 kW and 400 V on DC load.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this paper is to show a methodology to estimate the longitudinal parameters of transmission lines. The method is based on the modal analysis theory and developed from the currents and voltages measured at the sending and receiving ends of the line. Another proposal is to estimate the line impedance in function of the real-time load apparent power and power factor. The procedure is applied for a non-transposed 440 kV three-phase line. © 2011 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes a bridgeless boost interleaved PFC (power factor correction) converter with variable duty cycle control. The application of bridgeless technique causes reduction of conduction losses, while the interleaving technique of converters cells allows division of efforts in semiconductor devices and reduction of weight and volume of the input EMI filter. The use of variable duty cycle control has the functions of regulating the output voltage and eliminating the low order harmonic components that appears in the input current of the common interleaved power factor converters working in Discontinuous Conduction Mode (DCM). The simulation results of the proposed converter presented high power factor and a good transient response in relation to the output voltage regulation in presence of high load variations and supply voltage variations. © 2011 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work proposes a new three-phase multipulse rectifier based on the delta autotransformer connection with DC-DC Boost stages and constant hysteresis control which has the objective of providing a reliable DC bus for on-board applications, electric motor drives and similars, always considering power quality issues. Thus, the proposal presents 0.99 power factor, 6% harmonic distortions in the currents from the mains and enhanced magnetic core utilization, which results in low weight and volume for the overall converter. The proposed control technique uses the simple constant hysteresis concept, thus leading to a low-cost but effective and reliable strategy. © 2011 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents theoretical evaluation and experimental results to the proposed bridgeless interleaved boost PFC (power factor correction) converter. The application of bridgeless technique causes reduction of conduction losses, while the interleaving technique of the converter cells allows division of the current stress in semiconductor devices and reduction of weight and volume of the input EMI filter. In each cell of the converter, the inductor current operates in discontinuous conduction mode (DCM), which eliminates turn-on switching losses and the effects of reverse recovery in semiconductors, increasing the efficiency of the converter. The experimental results show the power factor of 0.96 for employed voltage ratio and an efficiency of 95.2 % for nominal load conditions. © 2012 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multipulse rectifiers can replace a conventional six pulse three-phase rectifier (diode bridge) providing a DC voltage with low ripple, low Total Harmonic Distortion of current (THDi) and a high Power Factor (PF). In this context is presented a multipulse rectifier with generalized Delta-differential autotransformer topology, which can provide any level of DC output voltage for any level of three-phase AC input voltage. This paper presents all the possible configurations for Delta topology in order to choose, through graphics, one configuration that presents reduced weight and volume. The average voltage on the DC bus must be compatible with the DC voltage in the six pulse rectifier used in commercial ASDs. Therefore, it is possible to apply the retrofit technique to replace the conventional bridge rectifier by the proposed multipulse rectifier. Based on mathematic models and simulation results, an 18-pulse rectifier with Delta topology, 220 V of line voltage, 315 V of DC output, and rating 2.5 kW of power was designed, implemented and applied for three different commercial ASDs. Experimental results as voltage and current waveforms and results about PF and THDi will be presented. © 2012 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEB