975 resultados para Porous titanium oxide
Resumo:
This work describes a modified sol-gel method for the preparation of V 2O 5/TiO 2 catalysts. The samples have been characterized by N 2 adsorption at 77K, x-ray diffractometry (XRD) and Fourier Transform Infrared (FT-IR). The surface area increases with the vanadia loading from 24 m 2 g -1, for pure TiO 2, to 87 m 2 g -1 for 9wt.% of V 2O 5. The rutile form is predominant for pure TiO 2 but became enriched with anatase phase when vanadia loading is increased. No crystalline V 2O 5 phase was observed in the catalysts diffractograms. Two species of surface vanadium observed by FT-IR spectroscopy a monomeric vanadyl and polymeric vanadates, the vanadyl/vanadate ratio remains practically constant.
Resumo:
Our efforts were directed to the preparation of bismuth titanate - Bi 4e;Ti3O12 (BIT) by mechanically assisted synthesis. The mechanical activation was applied to prepare bismuth titanate, Bi4e;Ti3O12, from bismuth oxide, Bi 2O3, and titanium oxide, TiO2 (in an anatase crystal form). Mechanochemical synthesis was performed in a planetary ball mill in air atmosphere. Bismuth titanate ceramics was obtained by sintering at 1000° C The formation of Bi4e;Ti3O12 in the sintered samples was confirmed by X-ray diffraction analysis. Scanning electron microscopy, SEM, was used to study the particle size and powder morphology. The obtained results indicate that Bi4e;Ti3O12 from the powder synthesized by high-energy ball milling exhibits good sinterability, showing advantage of the mechanochemical process over conventional solid-state reaction.
Resumo:
Titanium and its alloys are widely used as biomaterials due to their mechanical, chemical and biological properties. To enhance the biocompatibility of titanium alloys, various surface treatments have been proposed. In particular, the formation of titanium oxide nanotubes layers has been extensively examined. According to the literature, it is possible to induce the growth of TiO2 on the surface of titanium, employing the aqueous anodizing electrolyte. This Ti-7.5Mo alloy was anodized in glycerol electrolytes containg 0.25 wt% of NH4F, with variations in time, voltage and calcinations temperature. After anodization, the sample surfaces were analyzed with a field emission scanning electron microscopy, DRX and contact angle measurements. It was possible to observe the formation of TiO2 on the surface and these findings represent a simple surface treatment for Ti alloys that has high potential for biomedical applications. Copyright © 2013 American Scientific Publishers. All rights reserved.
Resumo:
Titanium and its alloys are widely used as biomaterials due to their mechanical, chemical and biological properties. To enhance the biocompatibility of titanium alloys, various surface treatments have been proposed. In particular, the formation of titanium oxide nanotubes layers has been extensively examined. Among the various materials for implants, calcium phosphates and hydroxyapatite are widely used clinically. In this work, titanium nanotubes were fabricated on the surface of Ti-7.5Mo alloy by anodization. The samples were anodized for 20 V in an electrolyte containing glycerol in combination with ammonium fluoride (NH4F, 0.25%), and the anodization time was 24 h. After being anodized, specimens were heat treated at 450 °C and 600°C for 1 h to crystallize the amorphous TiO2 nanotubes and then treated with NaOH solution to make them bioactive, to induce growth of calcium phosphate in a simulated body fluid. Surface morphology and coating chemistry were obtained respectively using, field-emission scanning electron microscopy (FEG-SEM), AFM and X-ray diffraction (XRD). It was shown that the presence of titanium nanotubes induces the growth of a sodium titanate nanolayer. During the subsequent invitro immersion in a simulated body fluid, the sodium titanate nanolayer induced the nucleation and growth of nano-dimensioned calcium phosphate. It was possible to observe the formation of TiO2 nanotubes on the surface of Ti-7.5Mo. Calcium phosphate coating was greater in the samples with larger nanotube diameter. These findings represent a simple surface treatment for Ti-7.5Mo alloy that has high potential for biomedical applications. © (2013) Trans Tech Publications, Switzerland.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Estudos realizados no resíduo do processo Bayer, lama vermelha, para reciclagem desse material têm sido intensificados por suas características físico-químicas. O resíduo é constituído por inúmeros óxidos, destes se destaca o óxido de ferro em teores acima de 30% em peso e óxido de titânio em concentrações acima de 5% em peso. Este trabalho estuda a possibilidade de extrair óxido de ferro, objetivando a concentração de compostos de titânio. A extração foi realizada através do processo de calcinação da lama vermelha a 900°C seguida de lixiviação ácida com concentração de H2SO4 a 20% e 30% em volume a 60°C, 80°C e 90°C, com retirada de uma alíquota a cada 30 minutos. Durante o processo de lixiviação, foi observada extração intensa dos compostos de ferro, resultando no aumento da concentração de titânio na lama vermelha, verificado em todos os experimentos, com destaque para os que foram realizados a 90°C e H2SO4 a 30% em v/v, onde houve extração de 95% de ferro e concentração de até 14% de titânio considerando o balanço de massa global. Diante dos dados obtidos, a lama vermelha torna-se um material interessante para ser utilizado como fonte alternativa para obtenção de minerais de titânio, os quais são encontrados na natureza com um percentual em torno de 8%.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this work, the influence of modifications of the cp-Ti and Ti 6Al 4V alloy, by treating the surface with NaOH and depositing titanium oxide and hydroxyapatite by sol-gel method, on their biocompatibility was studied. The coatings were characterized by scanning electron microscopy and X-ray diffraction which showed that the coatings on Ti 6Al 4V are better than on cp-Ti. Adhesion tests showed that adhesion strength of the coatings on cp-Ti substrate is less than on Ti 6Al 4V as well as cytotoxicity for L929 fibroblast cells is higher