916 resultados para Porous materials Permeability Computer simulation
Resumo:
This thesis considers the computer simulation of moist agglomerate collisions using the discrete element method (DEM). The study is confined to pendular state moist agglomerates, at which liquid is presented as either absorbed immobile films or pendular liquid bridges and the interparticle force is modelled as the adhesive contact force and interstitial liquid bridge force. Algorithms used to model the contact force due to surface adhesion, tangential friction and particle deformation have been derived by other researchers and are briefly described in the thesis. A theoretical study of the pendular liquid bridge force between spherical particles has been made and the algorithms for the modelling of the pendular liquid bridge force between spherical particles have been developed and incorporated into the Aston version of the DEM program TRUBAL. It has been found that, for static liquid bridges, the more explicit criterion for specifying the stable solution and critical separation is provided by the total free energy. The critical separation is given by the cube root of liquid bridge volume to a good approximation and the 'gorge method' of evaluation based on the toroidal approximation leads to errors in the calculated force of less than 10%. Three dimensional computer simulations of an agglomerate impacting orthogonally with a wall are reported. The results demonstrate the effectiveness of adding viscous binder to prevent attrition, a common practice in process engineering. Results of simulated agglomerate-agglomerate collisions show that, for colinear agglomerate impacts, there is an optimum velocity which results in a near spherical shape of the coalesced agglomerate and, hence, minimises attrition due to subsequent collisions. The relationship between the optimum impact velocity and the liquid viscosity and surface tension is illustrated. The effect of varying the angle of impact on the coalescence/attrition behaviour is also reported. (DX 187, 340).
Resumo:
The conventional design of forming rolls depends heavily on the individual skill of roll designers which is based on intuition and knowledge gained from previous work. Roll design is normally a trial an error procedure, however with the progress of computer technology, CAD/CAM systems for the cold roll-forming industry have been developed. Generally, however, these CAD systems can only provide a flower pattern based on the knowledge obtained from previously successful flower patterns. In the production of ERW (Electric Resistance Welded) tube and pipe, the need for a theoretical simulation of the roll-forming process, which can not only predict the occurrence of the edge buckling but also obtain the optimum forming condition, has been recognised. A new simulation system named "CADFORM" has been devised that can carry out the consistent forming simulation for this tube-making process. The CADFORM system applied an elastic-plastic stress-strain analysis and evaluate edge buckling by using a simplified model of the forming process. The results can also be visualised graphically. The calculated longitudinal strain is obtained by considering the deformation of lateral elements and takes into account the reduction in strains due to the fin-pass roll. These calculated strains correspond quite well with the experimental results. Using the calculated strains, the stresses in the strip can be estimated. The addition of the fin-pass roll reduction significantly reduces the longitudinal compressive stress and therefore effectively suppresses edge buckling. If the calculated longitudinal stress is controlled, by altering the forming flower pattern so it does not exceed the buckling stress within the material, then the occurrence of edge buckling can be avoided. CADFORM predicts the occurrence of edge buckling of the strip in tube-making and uses this information to suggest an appropriate flower pattern and forming conditions which will suppress the occurrence of the edge buckling.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY SERVICES WITH PRIOR ARRANGEMENT
Resumo:
In this review, we discuss the phenomenon of complementary macropore incorporation into mesoporous and/or microporous solids in order to enhance their catalytic performance in fuels and chemicals synthesis. © The Royal Society of Chemistry 2013.
Resumo:
Results of numerical experiments are introduced. Experiments were carried out by means of computer simulation on olfactory bulb for the purpose of checking of thinking mechanisms conceptual model, introduced in [2]. Key role of quasisymbol neurons in processes of pattern identification, existence of mental view, functions of cyclic connections between symbol and quasisymbol neurons as short-term memory, important role of synaptic plasticity in learning processes are confirmed numerically. Correctness of fundamental ideas put in base of conceptual model is confirmed on olfactory bulb at quantitative level.
Resumo:
During the past three decades, the use of roundabouts has increased throughout the world due to their greater benefits in comparison with intersections controlled by traditional means. Roundabouts are often chosen because they are widely associated with low accident rates, lower construction and operating costs, and reasonable capacities and delay. ^ In the planning and design of roundabouts, special attention should be given to the movement of pedestrians and bicycles. As a result, there are several guidelines for the design of pedestrian and bicycle treatments at roundabouts that increase the safety of both pedestrians and bicyclists at existing and proposed roundabout locations. Different design guidelines have differing criteria for handling pedestrians and bicyclists at roundabout locations. Although all of the investigated guidelines provide better safety (depending on the traffic conditions at a specific location), their effects on the performance of the roundabout have not been examined yet. ^ Existing roundabout analysis software packages provide estimates of capacity and performance characteristics. This includes characteristics such as delay, queue lengths, stop rates, effects of heavy vehicles, crash frequencies, and geometric delays, as well as fuel consumption, pollutant emissions and operating costs for roundabouts. None of these software packages, however, are capable of determining the effects of various pedestrian crossing locations, nor the effect of different bicycle treatments on the performance of roundabouts. ^ The objective of this research is to develop simulation models capable of determining the effect of various pedestrian and bicycle treatments at single-lane roundabouts. To achieve this, four models were developed. The first model simulates a single-lane roundabout without bicycle and pedestrian traffic. The second model simulates a single-lane roundabout with a pedestrian crossing and mixed flow bicyclists. The third model simulates a single-lane roundabout with a combined pedestrian and bicycle crossing, while the fourth model simulates a single-lane roundabout with a pedestrian crossing and a bicycle lane at the outer perimeter of the roundabout for the bicycles. Traffic data was collected at a modern roundabout in Boca Raton, Florida. ^ The results of this effort show that installing a pedestrian crossing on the roundabout approach will have a negative impact on the entry flow, while the downstream approach will benefit from the newly created gaps by pedestrians. Also, it was concluded that a bicycle lane configuration is more beneficial for all users of the roundabout instead of the mixed flow or combined crossing. Installing the pedestrian crossing at one-car length is more beneficial for pedestrians than two- and three-car lengths. Finally, it was concluded that the effect of the pedestrian crossing on the vehicle queues diminishes as the distance between the crossing and the roundabout increases. ^
Resumo:
Proteins are specialized molecules that catalyze most of the reactions that can sustain life, and they become functional by folding into a specific 3D structure. Despite their importance, the question, "how do proteins fold?" - first pondered in in the 1930's - is still listed as one of the top unanswered scientific questions as of 2005, according to the journal Science. Answering this question would provide a foundation for understanding protein function and would enable improved drug targeting, efficient biofuel production, and stronger biomaterials. Much of what we currently know about protein folding comes from studies on small, single-domain proteins, which may be quite different from the folding of large, multidomain proteins that predominate the proteomes of all organisms.
In this thesis I will discuss my work to fill this gap in understanding by studying the unfolding and refolding of large, multidomain proteins using the powerful combination of single-molecule force-spectroscopy experiments and molecular dynamic simulations.
The three model proteins studied - Luciferase, Protein S, and Streptavidin - lend insight into the inter-domain dependence for unfolding and the subdomain stabilization of binding ligands, and ultimately provide new insight into atomistic details of the intermediate states along the folding pathway.
Resumo:
The deposition of stiff and strong coatings onto porous templates offers a novel strategy for fabricating macroscale materials with controlled architectures at the micro- and nanoscale. Here, layer-by-layer assembly is utilized to fabricate nanocomposite-coated foams with highly customizable properties by depositing polymer–nanoclay coatings onto open-cell foam templates. The compressive mechanical behavior of these materials evolves in a predictable manner that is qualitatively captured by scaling laws for the mechanical properties of cellular materials. The observed and predicted properties span a remarkable range of density-stiffness space, extending from regions of very soft elastomer foams to very stiff, lightweight honeycomb and lattice materials.
Resumo:
Abstract not available
Resumo:
The protein folding problem has been one of the most challenging subjects in biological physics due to its complexity. Energy landscape theory based on statistical mechanics provides a thermodynamic interpretation of the protein folding process. We have been working to answer fundamental questions about protein-protein and protein-water interactions, which are very important for describing the energy landscape surface of proteins correctly. At first, we present a new method for computing protein-protein interaction potentials of solvated proteins directly from SAXS data. An ensemble of proteins was modeled by Metropolis Monte Carlo and Molecular Dynamics simulations, and the global X-ray scattering of the whole model ensemble was computed at each snapshot of the simulation. The interaction potential model was optimized and iterated by a Levenberg-Marquardt algorithm. Secondly, we report that terahertz spectroscopy directly probes hydration dynamics around proteins and determines the size of the dynamical hydration shell. We also present the sequence and pH-dependence of the hydration shell and the effect of the hydrophobicity. On the other hand, kinetic terahertz absorption (KITA) spectroscopy is introduced to study the refolding kinetics of ubiquitin and its mutants. KITA results are compared to small angle X-ray scattering, tryptophan fluorescence, and circular dichroism results. We propose that KITA monitors the rearrangement of hydrogen bonding during secondary structure formation. Finally, we present development of the automated single molecule operating system (ASMOS) for a high throughput single molecule detector, which levitates a single protein molecule in a 10 µm diameter droplet by the laser guidance. I also have performed supporting calculations and simulations with my own program codes.
Resumo:
When designing a new passenger ship or naval vessel or modifying an existing design, how do we ensure that the proposed design is safe from an evacuation point of view? In the wake of major maritime disasters such as the Herald of Free Enterprise and the Estonia and in light of the growth in the numbers of high density, high-speed ferries and large capacity cruise ships, issues concerned with the evacuation of passengers and crew at sea are receiving renewed interest. In the maritime industry, ship evacuation models are now recognised by IMO through the publication of the Interim Guidelines for Evacuation Analysis of New and Existing Passenger Ships including Ro-Ro. This approach offers the promise to quickly and efficiently bring evacuation considerations into the design phase, while the ship is "on the drawing board" as well as reviewing and optimising the evacuation provision of the existing fleet. Other applications of this technology include the optimisation of operating procedures for civil and naval vessels such as determining the optimal location of a feature such as a casino, organising major passenger movement events such as boarding/disembarkation or restaurant/theatre changes, determining lean manning requirements, location and number of damage control parties, etc. This paper describes the development of the maritimeEXODUS evacuation model which is fully compliant with IMO requirements and briefly presents an example application to a large passenger ferry.
Resumo:
This work is divided into two distinct parts. The first part consists of the study of the metal organic framework UiO-66Zr, where the aim was to determine the force field that best describes the adsorption equilibrium properties of two different gases, methane and carbon dioxide. The other part of the work focuses on the study of the single wall carbon nanotube topology for ethane adsorption; the aim was to simplify as much as possible the solid-fluid force field model to increase the computational efficiency of the Monte Carlo simulations. The choice of both adsorbents relies on their potential use in adsorption processes, such as the capture and storage of carbon dioxide, natural gas storage, separation of components of biogas, and olefin/paraffin separations. The adsorption studies on the two porous materials were performed by molecular simulation using the grand canonical Monte Carlo (μ,V,T) method, over the temperature range of 298-343 K and pressure range 0.06-70 bar. The calibration curves of pressure and density as a function of chemical potential and temperature for the three adsorbates under study, were obtained Monte Carlo simulation in the canonical ensemble (N,V,T); polynomial fit and interpolation of the obtained data allowed to determine the pressure and gas density at any chemical potential. The adsorption equilibria of methane and carbon dioxide in UiO-66Zr were simulated and compared with the experimental data obtained by Jasmina H. Cavka et al. The results show that the best force field for both gases is a chargeless united-atom force field based on the TraPPE model. Using this validated force field it was possible to estimate the isosteric heats of adsorption and the Henry constants. In the Grand-Canonical Monte Carlo simulations of carbon nanotubes, we conclude that the fastest type of run is obtained with a force field that approximates the nanotube as a smooth cylinder; this approximation gives execution times that are 1.6 times faster than the typical atomistic runs.
Resumo:
The dynamical properties ofshaken granular materials are important in many industrial applications where the shaking is used to mix, segregate and transport them. In this work asystematic, large scale simulation study has been performed to investigate the rheology of dense granular media, in the presence of gas, in a three dimensional vertical cylinder filled with glass balls. The base wall of the cylinder is subjected to sinusoidal oscillation in the vertical direction. The viscoelastic behavior of glass balls during a collision, have been studied experimentally using a modified Newton's Cradle device. By analyzing the results of the measurements, using numerical model based on finite element method, the viscous damping coefficient was determinedfor the glass balls. To obtain detailed information about the interparticle interactions in a shaker, a simplified model for collision between particles of a granular material was proposed. In order to simulate the flow of surrounding gas, a formulation of the equations for fluid flow in a porous medium including particle forces was proposed. These equations are solved with Large Eddy Simulation (LES) technique using a subgrid-model originally proposed for compressible turbulent flows. For a pentagonal prism-shaped container under vertical vibrations, the results show that oscillon type structures were formed. Oscillons are highly localized particle-like excitations of the granular layer. This self-sustaining state was named by analogy with its closest large-scale analogy, the soliton, which was first documented by J.S. Russell in 1834. The results which has been reportedbyBordbar and Zamankhan(2005b)also show that slightly revised fluctuation-dissipation theorem might apply to shaken sand, which appears to be asystem far from equilibrium and could exhibit strong spatial and temporal variations in quantities such as density and local particle velocity. In this light, hydrodynamic type continuum equations were presented for describing the deformation and flow of dense gas-particle mixtures. The constitutive equation used for the stress tensor provides an effective viscosity with a liquid-like character at low shear rates and a gaseous-like behavior at high shear rates. The numerical solutions were obtained for the aforementioned hydrodynamic equations for predicting the flow dynamics ofdense mixture of gas and particles in vertical cylindrical containers. For a heptagonal prism shaped container under vertical vibrations, the model results were found to predict bubbling behavior analogous to those observed experimentally. This bubbling behavior may be explained by the unusual gas pressure distribution found in the bed. In addition, oscillon type structures were found to be formed using a vertically vibrated, pentagonal prism shaped container in agreement with computer simulation results. These observations suggest that the pressure distribution plays a key rolein deformation and flow of dense mixtures of gas and particles under vertical vibrations. The present models provide greater insight toward the explanation of poorly understood hydrodynamic phenomena in the field of granular flows and dense gas-particle mixtures. The models can be generalized to investigate the granular material-container wall interactions which would be an issue of high interests in the industrial applications. By following this approach ideal processing conditions and powder transport can be created in industrial systems.