995 resultados para Pore forming


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Voltage-gated channel proteins sense a change in the transmembrane electric field and respond with a conformational change that allows ions to diffuse across the pore-forming structure. Site-specific mutagenesis combined with electrophysiological analysis of expressed mutants in amphibian oocytes has previously established the S4 transmembrane segment as an element of the voltage sensor. Here, we show that mutations of conserved negatively charged residues in S2 and S3 of a brain K+ channel, thought of as countercharges for the positively charged residues in S4, selectively modulate channel gating without modifying the permeation properties. Mutations of Glu235 in S2 that neutralize or reverse charge increase the probability of channel opening and the apparent gating valence. In contrast, replacements of Glu272 by Arg or Thr268 by Asp in S3 decrease the open probability and the apparent gating valence. Residue Glu225 in S2 tolerated replacement only by acidic residues, whereas Asp258 in S3 was intolerant to any attempted change. These results imply that S2 and S3 are unlikely to be involved in channel lining, yet, together with S4, may be additional components of the voltage-sensing structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cyclic nucleotide-gated (CNG) cation channels contain two short sequence motifs--a residual voltage-sensor (S4) and a pore-forming (P) segment--that are reminiscent of similar segments in voltage-activated Shaker-type K+ channels. It has been tacitly assumed that CNG channels and this K+ channel subfamily share a common overall topology, characterized by a hydrophobic domain comprising six membrane-spanning segments. We have systematically investigated the topology of CNG channels from bovine rod photoreceptor and Drosophila melanogaster by a gene fusion approach using the bacterial reporter enzymes alkaline phosphatase and beta-galactosidase, which are active only in the periplasm and only in the cytoplasm, respectively. Enzymatic activity was determined after expression of fusion constructs in Escherichia coli. CNG channels were found to have six membrane-spanning segments, suggesting that CNG and Shaker-type K+ channels, albeit distant relatives within a gene superfamily of ion channels, share a common topology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single channel recordings demonstrate that ion channels switch stochastically between an open and a closed pore conformation. In search of a structural explanation for this universal open/close behavior, we have uncovered a striking degree of amino acid homology across the pore-forming regions of voltage-gated K channels and glutamate receptors. This suggested that the pores of these otherwise unrelated classes of channels could be structurally conserved. Strong experimental evidence supports a hairpin structure for the pore-forming region of K channels. Consequently, we hypothesized the existence of a similar structure for the pore of glutamate receptors. In ligand-gated channels, the pore is formed by M2, the second of four putative transmembrane segments. A hairpin structure for M2 would affect the subsequent membrane topology, inverting the proposed orientation of the next segments, M3. We have tested this idea for the NR1 subunit of the N-methyl-D-aspartate receptor. Mutations that affected the glycosylation pattern of the NR1 subunit localize both extremes of the M3-M4 linker to the extracellular space. Whole cell currents and apparent agonist affinities were not affected by these mutations. Therefore it can be assumed that they represent the native transmembrane topology. The extracellular assignment of the M3-M4 linker challenged the current topology model by inverting M3. Taken together, the amino acid homology and the new topology suggest that the pore-forming M2 segment of glutamate receptors does not transverse the membrane but, rather, forms a hairpin structure, similar to that found in K channels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Among the toxic polypeptides secreted in the venom of sea anemones, actinoporins are pore forming toxins whose toxic activity relies on the formation of oligomeric pores within biological membranes. Intriguingly, actinoporins appear as multigene families which give rise to many protein isoforms in the same individual displaying high sequence identities but large functional differences. However, the evolutionary advantage of producing such similar isotoxins is not fully understood. Here, using sticholysins I and II (StnI and StnII) from the sea anemone Stichodactyla helianthus, it is shown that actinoporin isoforms can potentiate each other’s activity. Through hemolysis and calcein releasing assays, it is revealed that mixtures of StnI and StnII are more lytic than equivalent preparations of the corresponding isolated isoforms. It is then proposed that this synergy is due to the assembly of heteropores since (i) StnI and StnII can be chemically cross-linked at the membrane and (ii) the affinity of sticholysin mixtures for the membrane is increased with respect to any of them acting in isolation, as revealed by isothermal titration calorimetry experiments. These results help to understand the multigene nature of actinoporins and may be extended to other families of toxins that require oligomerization to exert toxicity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Among the toxic polypeptides secreted in the venom of sea anemones, actinoporins are the pore-forming toxins whose toxic activity relies on the formation of oligomeric pores within biological membranes. Intriguingly, actinoporins appear as multigene families that give rise to many protein isoforms in the same individual displaying high sequence identities but large functional differences. However, the evolutionary advantage of producing such similar isotoxins is not fully understood. Here,using sticholysins I and II (StnI and StnII) from the sea anemone Stichodactyla helianthus, it is shown that actinoporin isoforms can potentiate each other’s activity. Through hemolysis and calcein releasing assays, it is revealed that mixtures of StnI and StnII are more lytic than equivalent preparations of the corresponding isolated isoforms. It is then proposed that this synergy is due to the assembly of heteropores because (i) StnI and StnII can be chemically cross-linked at the membrane and (ii) the affinity of sticholysin mixtures for the membrane is increased with respect to any of them acting in isolation, as revealed by isothermal titration calorimetry experiments. These results help us understand the multigene nature of actinoporins and may be extended to other families of toxins that require oligomerization to exert toxicity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-voltage-activated calcium channels are hetero-oligomeric protein complexes that mediate multiple cellular processes, including the influx of extracellular Ca2+, neurotransmitter release, gene transcription, and synaptic plasticity. These channels consist of a primary α1 pore-forming subunit, which is associated with an extracellular α2δ subunit and an intracellular β auxiliary subunit, which alter the gating properties and trafficking of the calcium channel. The cellular localization of the α2δ3 subunit in the mouse and rat retina is unknown. In this study using RT-PCR, a single band at ∼305 bp corresponding to the predicted size of the α2δ3 subunit fragment was found in mouse and rat retina and brain homogenates. Western blotting of rodent retina and brain homogenates showed a single 123-kDa band. Immunohistochemistry with an affinity-purified antibody to the α2δ3 subunit revealed immunoreactive cell bodies in the ganglion cell layer and inner nuclear layer and immunoreactive processes in the inner plexiform layer and the outer plexiform layer. α2δ3 immunoreactivity was localized to multiple cell types, including ganglion, amacrine, and bipolar cells and photoreceptors, but not horizontal cells. The expression of the α2δ3 calcium channel subunit to multiple cell types suggests that this subunit participates widely in Ca-channel-mediated signaling in the retina.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les canaux calciques de type L CaV1.2 sont principalement responsables de l’entrée des ions calcium pendant la phase plateau du potentiel d’action des cardiomyocytes ventriculaires. Cet influx calcique est requis pour initier la contraction du muscle cardiaque. Le canal CaV1.2 est un complexe oligomérique qui est composé de la sous-unité principale CaVα1 et des sous-unités auxiliaires CaVβ et CaVα2δ1. CaVβ joue un rôle déterminant dans l’adressage membranaire de la sous-unité CaVα1. CaVα2δ1 stabilise l’état ouvert du canal mais le mécanisme moléculaire responsable de cette modulation n’a pas été encore identifié. Nous avons récemment montré que cette modulation requiert une expression membranaire significative de CaVα2δ1 (Bourdin et al. 2015). CaVα2δ1 est une glycoprotéine qui possède 16 sites potentiels de glycosylation de type N. Nous avons donc évalué le rôle de la glycosylation de type-N dans l’adressage membranaire et la stabilité de CaVα2δ1. Nous avons d’abord confirmé que la protéine CaVα2δ1 recombinante, telle la protéine endogène, est significativement glycosylée puisque le traitement à la PNGase F se traduit par une diminution de 50 kDa de sa masse moléculaire, ce qui est compatible avec la présence de 16 sites Asn. Il s’est avéré par ailleurs que la mutation simultanée de 6/16 sites (6xNQ) est suffisante pour 1) réduire significativement la densité de surface de! CaVα2δ1 telle que mesurée par cytométrie en flux et par imagerie confocale 2) accélérer les cinétiques de dégradation telle qu’estimée après arrêt de la synthèse protéique et 3) diminuer la modulation fonctionnelle des courants générés par CaV1.2 telle qu’évaluée par la méthode du « patch-clamp ». Les effets les plus importants ont toutefois été obtenus avec les mutants N663Q, et les doubles mutants N348Q/N468Q, N348Q/N812Q, N468Q/N812Q. Ensemble, ces résultats montrent que Asn663 et à un moindre degré Asn348, Asn468 et Asn812 contribuent à la biogenèse et la stabilité de CaVα2δ1 et confirment que la glycosylation de type N de CaVα2δ1 est nécessaire à la fonction du canal calcique cardiaque de type L.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Insects have a much smaller repertoire of voltage-gated calcium (Ca-v) channels than vertebrates. Drosophila melanogaster harbors only a single ortholog of each of the vertebrate Ca(v)1, Ca(v)2, and Ca(v)3 subtypes, although its basal inventory is expanded by alternative splicing and editing of Ca-v channel transcripts. Nevertheless, there appears to be little functional plasticity within this limited panel of insect Ca-v channels, since severe loss-of-function mutations in genes encoding the pore-forming a, subunits in Drosophila are embryonic lethal. Since the primary role of spider venom is to paralyze or kill insect prey, it is not surprising that most, if not all, spider venoms contain peptides that potently modify the activity of these functionally critical insect Ca-v channels. Unfortunately, it has proven difficult to determine the precise ion channel subtypes recognized by these peptide toxins since insect Ca-v channels have significantly different pharmacology to their vertebrate counterparts, and cloned insect Ca-v channels are not available for electrophysiological studies. However, biochemical and genetic studies indicate that some of these spider toxins might ultimately become the defining pharmacology for certain subtypes of insect Ca-v channels. This review focuses on peptidic spider toxins that specifically target insect Ca-v channels. In addition to providing novel molecular tools for ion channel characterization, some of these toxins are being used as leads to develop new methods for controlling insect pests. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bilateral corneal blindness represents a quarter of the total blind, world-wide. The artificial cornea in assorted forms, was developed to replace opaque non-functional corneas and to return sight in otherwise hopeless cases that were not amenable to corneal grafts; believed to be 2% of corneal blind. Despite technological advances in materials design and tissue engineering no artificial cornea has provided absolute, long-term success. Formidable problems exist, due to a combination of unpredictable wound healing and unmanageable pathology. To have a solid guarantee of reliable success an artificial cornea must possess three attributes: an optical window to replace the opaque cornea; a strong, long term union to surrounding ocular tissue; and the ability to induce desired host responses. A unique artificial cornea possesses all three functional attributes- the Osteo-odonto-keratoprosthesis (OOKP). The OOKP has a high success rate and can survive for up to twenty years, but it is complicated both in structure and in surgical procedure; it is expensive and not universally available. The aim of this project was to develop a synthetic substitute for the OOKP, based upon key features of the tooth and bone structure. In doing so, surgical complexity and biological complications would be reduced. Analysis of the biological effectiveness of the OOKP showed that the structure of bone was the most crucial component for implant retention. An experimental semi-rigid hydroxyapatite framework was fabricated with a complex bone-like architecture, which could be fused to the optical window. The first method for making such a framework, was pressing and sintering of hydroxyapatite powders; however, it was not possible to fabricate a void architecture with the correct sizes and uniformity of pores. Ceramers were synthesised using alternative pore forming methods, providing for improved mechanical properties and stronger attachment to the plastic optical window. Naturally occurring skeletal structures closely match the structural features of all forms of natural bone. Synthetic casts were fabricated using the replamineform process, of desirable natural artifacts, such as coral and sponges. The final method of construction by-passed ceramic fabrication in favour of pre-formed coral derivatives and focused on methods for polymer infiltration, adhesion and fabrication. Prototypes were constructed and evaluated; a fully penetrative synthetic OOKP analogue was fabricated according to the dimensions of the OOKP. Fabrication of the cornea shaped OOKP synthetic analogue was also attempted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Escherichia coli (E.coli) is a diverse bacterial species that primarily forms a beneficial symbiotic relationship with the host in the human lower gastrointestinal track (GIT), however it can also be pathogenic in this environment. Furthermore, some strains can diverge from the GIT and occupy niches such as the urinary tract. In all these environments, E. coli interacts with the immune system and macrophages represent the front line of the innate immune system. In this study we characterise the immune response by macrophages to E. coli infection. It was shown that E. coli broadly provoke a similar cytokine response during macrophages infection and furthermore are degraded primarily by the phagocytosis pathway. Recently a new group of E. coli called Adherent Invasive Escherichia coli (AIEC) has been described. AIEC are present in the guts of Crohn’s disease (CD) patients at a higher frequency than in healthy patients. AIEC can replicate in macrophages but the mechanism for this is not fully understood. The processing of AIEC by macrophages was investigated and it was shown that AIEC only replicated in permissive macrophages. Furthermore, even in a permissive macrophages AIEC are trafficked through macrophages in a similar manner to commensal E. coli. This supports the hypothesis that AIEC are highly similar to commensal E. coli and only cause pathogenicity when present in the permissive environment of the gut of CD patients. Replication in macrophages requires functioning metabolic pathways and it was identified that glycolysis is important for AIEC survival in macrophages. AIEC mutants without a fully functioning glycolysis pathway induced less IL-1β cytokine release from macrophages than wild type strain suggesting that metabolism plays a role in inflammasome activation. Furthermore, AIEC mutants that could not produce the glycolytic end product acetate induced significantly reduced IL-1β release during infection. This suggest that the acetate molecule or a phenotypic effect of its production may be a driver of IL-1β release from AIEC infected macrophages. The interaction of uropathogenic E. coli (UPEC) with macrophages was also investigated. UPEC induced very high levels of cytotoxicity in human macrophages which was shown to be dependent on the production of the pore forming toxin α-hemolysin. However, UPEC did not induced high levels of cytotoxicity in murine macrophages suggesting there are species specific sensitivity to α-hemolysin that should be considered when studying UPEC pathogenicity in murine models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The importance of ion channels in the hallmarks of many cancers is increasingly recognised. This article reviews current knowledge of the expression of members of the voltage-gated calcium channel family (CaV) in cancer at the gene and protein level and discusses their potential functional roles. The ten members of the CaV channel family are classified according to expression of their pore-forming α-subunit; moreover, co-expression of accessory α2δ, β and γ confers a spectrum of biophysical characteristics including voltage dependence of activation and inactivation, current amplitude and activation/inactivation kinetics. CaV channels have traditionally been studied in excitable cells including neurones, smooth muscle, skeletal muscle and cardiac cells, and drugs targeting the channels are used in the treatment of hypertension and epilepsy. There is emerging evidence that several CaV channels are differentially expressed in cancer cells compared to their normal counterparts. Interestingly, a number of CaV channels also have non-canonical functions and are involved in transcriptional regulation of the expression of other proteins including potassium channels. Pharmacological studies show that CaV canonical function contributes to the fundamental biology of proliferation, cell-cycle progression and apoptosis. This raises the intriguing possibility that calcium channel blockers, approved for the treatment of other conditions, could be repurposed to treat particular cancers. Further research will reveal the full extent of both the canonical and non-canonical functions of CaV channels in cancer and whether calcium channel blockers are beneficial in cancer treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A critical step during Bacillus anthracis infection is the outgrowth of germinated spores into vegetative bacilli that proliferate and disseminate rapidly within the host. An important challenge exists for developing chemotherapeutic agents that act upon and kill B. anthracis immediately after germination initiation when antibiotic resistance is lost, but prior to the outgrowth into vegetative bacilli, which is accompanied by toxin production. Chemical agents must also function in a manner refractive to the development of antimicrobial resistance. In this thesis we have identified the lantibiotics as a class of chemotherapeutics that are predicted to satisfy these two criteria. The objective of this thesis was to evaluate the efficacy of nisin, a prototypical lantibiotic, in prevention of outgrowth of germinated B. anthracis spores. Like all lantibiotics, nisin is a ribosomally translated peptide that undergoes post-translational modification to form (methyl)lanthionine rings that are critical for antimicrobial activity. Our studies indicate that nisin rapidly inhibits the in vitro outgrowth of germinated B. anthracis Sterne 7702 spores. Although germination initiation was shown to be essential for nisin-dependent antimicrobial activity, nisin did not inhibit or promote germination initiation. Nisin irreversibly killed germinated spores by blocking the establishment of a membrane potential and oxidative metabolism, while not affecting the dissolution of the outer spore structures. The membrane permeability of the spore was increased by nisin, but germinated spores did not undergo full lysis. Nisin was demonstrated to localize to lipid II, which is the penultimate precursor for cell wall biogenesis. This localization suggests two possible independent mechanisms of action, membrane pore formation and inhibition of peptidoglycan synthesis. Structure-activity studies with a truncated form of nisin lacking the two C-terminal (methyl)lanthionine rings and with non-pore forming mutants indicated that membrane disruption is essential for nisin-dependent inhibition of spore outgrowth to prevent membrane potential establishment. Finally, utilizing an in vitro infection model, it was shown that nisin reduced the viability of B. anthracis spores within an infection resulting in increased survival of immune cells while reducing infection-mediated cytokine expression. Fluorescence microscopy indicated that nisin localizes with spores within phagosomes of peritioneal macrophages in germinating conditions. These data demonstrate the effectiveness of nisin, as a model lantibiotic, for preventing spore outgrowth. It is speculated that nisin targeting of lipid II, resulting in membrane perturbations, may be effective at inhibiting the outgrowth of spores prepared from bacteria across a number of species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Porous polymer particles are used in an extraordinarily wide range of advanced and everyday applications, from combinatorial chemistry, solid-phase organic synthesis and polymer-supported reagents, to environmental analyses and the purification of drinking water. The installation and exploitation of functional chemical handles on the particles is often a prerequisite for their successful exploitation, irrespective of the application and the porous nature of the particles. New methodology for the chemical modification of macroreticular polymers is the primary focus of the work presented in this thesis. Porous polymer microspheres decorated with a diverse range of functional groups were synthesised by the post-polymerisation chemical modification of beaded polymers via olefin cross metathesis. The polymer microspheres were prepared by the precipitation polymerisation of divinylbenzene in porogenic (pore-forming) solvents; the olefin cross-metathesis (CM) functionalisation reactions exploited the pendent (polymer-bound) vinyl groups that were not consumed by polymerisation. Olefin CM reactions involving the pendent vinyl groups were performed in dichloromethane using second-generation Grubbs catalyst (Grubbs II), and a wide range of coupling partners used. The results obtained indicate that high quality, porous polymer microspheres synthesised by precipitation polymerisation in near-θ solvents can be functionalised by olefin CM under very mild conditions to install a diverse range of chemical functionalities into a common polydivinylbenzene precursor. Gel-type polymer microspheres were prepared by the precipitation copolymerisation reaction of divinylbenzene and allyl methacrylate in neat acetonitrile. The unreacted pendent vinyl groups that were not consumed by polymerisation were subjected to internal and external olefin metathesis-based hypercrosslinking reactions. Internal hypercrosslinking was carried out by using ring-closing metathesis (RCM) reactions in toluene using Grubbs II catalyst. Under these conditions, hypercrosslinked (HXL) polymers with specific surface areas around 500 m2g-1 were synthesised. External hypercrosslinking was attempted by using CM/RCM in the presence of a multivinyl coupling partner in toluene using second-generation Hoveyda-Grubbs catalyst. The results obtained indicate that no HXL polymers were obtained. However, during the development of this methodology, a new type of polymerisation was discovered with tetraallylorthosilicate as monomer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Actinoporins are pore-forming toxins from sea anemones. Upon interaction with sphingomyelin-containing bilayers, they become integral oligomeric membrane structures that form a pore. Sticholysin II from Stichodactyla helianthus contains five tryptophans located at strategic positions; its role has now been studied using different mutants. Results show that W43 and W115 play a eterminant role in maintaining the high thermostability of the protein, while W146 provides specific interactions for protomer−protomer assembly. W110 and W114 sustain the hydrophobic effect, which is one of the major driving forces for membrane binding in the presence of Chol. However, in its absence, additional interactions with sphingomyelin are required. These conclusions were confirmed with two sphingomyelin analogues, one of which had impaired hydrogen bonding properties. The results obtained support actinoporins’ Trp residues playing a major role in membrane recognition and binding, but their residues have an only minor influence on the diffusion and oligomerization steps needed to assemble a functional pore.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pore architecture of scaffolds is known to play a critical role in tissue engineering as it provides the vital framework for seeded cells to organize into a functioning tissue. In this report we have investigated the effects of different concentrations of silk fibroin protein on three-dimensional (3D) scaffold pore microstructure. Four pore size ranges of silk fibroin scaffolds were made by the freeze drying technique, with the pore sizes ranging from 50 to 300 lm. The pore sizes of the scaffolds decreased as the concentration of fibroin protein increased. Human bone marrow mesenchymal stromal cells (BMSC) transfected with the BMP7 gene were cultured in these scaffolds. A cell viability colorimetric assay, alkaline phosphatase assay and reverse transcription-polymerase chain reaction were performed to analyze the effect of pore size on cell growth, the secretion of extracellular matrix (ECM) and osteogenic differentiation. Cell migration in 3D scaffolds was confirmed by confocal microscopy. Calvarial defects in SCID mice were used to determine the bone forming ability of the silk fibroin scaffolds incorporating BMSC expressing BMP7. The results showed that BMSC expressing BMP7 preferred a pore size between 100 and 300 lm in silk fibroin protein fabricated scaffolds, with better cell proliferation and ECM production. Furthermore, in vivo transplantation of the silk fibroin scaffolds combined with BMSC expressing BMP7 induced new bone formation. This study has shown that an optimized pore architecture of silk fibroin scaffolds can modulate the bioactivity of BMP7-transfected BMSC in bone formation.