196 resultados para Polynomially solvable
Resumo:
In this work we solve the Dirac equation by constructing the exact bound state solutions for a mixing of vector and scalar generalized Hartmann potentials. This is done provided the vector potential is equal to or minus the scalar potential. The cases of some quasi-exactly solvable and Morse-like potentials are briefly commented. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The intrinsically relativistic problem of neutral fermions subject to kink-like potentials (similar to tanh gamma x) is investigated and the exact bound-state solutions are found. Apart from the lonely hump solutions for E = +/- mc(2), the problem is mapped into the exactly solvable Sturm-Liouville problem with a modified Poschl-Teller potential. An apparent paradox concerning the uncertainty principle is solved by resorting to the concepts of effective mass and effective Compton wavelength. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We present a new method to construct the exactly solvable PT-symmetric potentials within the framework of the position-dependent effective mass Dirac equation with the vector potential coupling scheme in 1 + 1 dimensions. In order to illustrate the procedure, we produce three PT-symmetric potentials as examples, which are PT-symmetric harmonic oscillator-like potential, PT-symmetric potential with the form of a linear potential plus an inversely linear potential, and PT-symmetric kink-like potential, respectively. The real relativistic energy levels and corresponding spinor components for the bound states are obtained by using the basic concepts of the supersymmetric quantum mechanics formalism and function analysis method. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We present a bilevel model for transmission expansion planning within a market environment, where producers and consumers trade freely electric energy through a pool. The target of the transmission planner, modeled through the upper-level problem, is to minimize network investment cost while facilitating energy trading. This upper-level problem is constrained by a collection of lower-level market clearing problems representing pool trading, and whose individual objective functions correspond to social welfare. Using the duality theory the proposed bilevel model is recast as a mixed-integer linear programming problem, which is solvable using branch-and-cut solvers. Detailed results from an illustrative example and a case study are presented and discussed. Finally, some relevant conclusions are drawn.
Resumo:
Não há critérios universalmente aceitos para a remissão clínica em artrite idiopática juvenil/artrite reumatóide juvenil (AIJ/ARJ). OBJETIVO: formar consenso sobre estes critérios. MÉTODOS: foi utilizado um inquérito pelo método Delphi para reunir os critérios vigentes e utilizados por especialistas em reumatologia pediátrica (RP) no mundo todo. A análise dos resultados constituiu a base para uma Consensus Conference utilizando a nominal group technique (NGT) para alcançar o consenso nas questões não resolvidas após a análise dos questionários deste inquérito. Cento e trinta RP de 34 países responderam ao inquérito e 20 RP de nove países elegeram os critérios durante dois dias, em processo de discussão estruturada, para formar consenso pela NGT. RESULTADOS: os critérios de doença inativa deveriam incluir: 1) nenhuma articulação com artrite em atividade; 2) ausência de febre, rash, serosite, esplenomegalia ou linfadenopatia generalizada atribuída à AIJ/ARJ; 3) ausência de uveíte em atividade; 4) VHS ou PCR negativas (se ambos forem testados, ambos devem ser normais); 5) a avaliação global pelo médico deve indicar o melhor escore possível, indicando doença inativa. CONCLUSÕES: de acordo com o voto de consenso, seis meses contínuos de doença inativa são necessários para se considerar um paciente em estado de remissão com medicação; 12 meses contínuos de doença inativa e sem medicação são necessários para considerar um paciente em estado de remissão sem medicação. O critério para remissão sem medicação deve prever com acurácia de 95% a probabilidade inferior a 20% de recaída em cinco anos.
Resumo:
Three dimensional exactly solvable quantum potentials for which an extra term of form 1/r(2) has been added are shown to maintain their functional form which allows the construction of the Hamiltonian hierarchy and the determination of the spectra of eigenvalues and eigenfunctions within the Supersymmetric Quantum Mechanics formalism. For the specific cases of the harmonic oscillator and the Coulomb potentials, known as pseudo-harmonic oscillator and pseudo-Coulomb potentials, it is shown here that the inclusion of the new term corresponds to rescaling the angular momentum and it is responsible for maintaining their exact solvability.
Resumo:
lsoscalar (T = 0) plus isovector (T = 1) pairing Hamiltonian in LS-coupling. which is important for heavy N = Z nuclei, is solvable in terms of a SO(8) Lie algebra for three special values of the mixing parameter that measures the competition between the T = 0 aid T = 1 pairing. The SO(8) algebra is generated, amongst others, by the S = 1, T = 0 and S = 0, T = 1 pair creation and annihilation operators and corresponding to the three values of the mixing parameter, there are three chains of subalgebras: SO(8) superset of SOST (6) superset of SOS(3) circle times SOT(3), SO(8) superset of [SOS(5) superset of SOS(3)] circle times SOT(3) and SO(8) superset of [SOT(5) superset of SOT(3)] circle times SOS(3). Shell model Lie algebras, with only particle number conserving generators, that are complementary to these three chains of subalgebras are identified and they are used in the classification of states for a given number of nucleons. The classification problem is solved explicitly tor states with SO(8) seniority nu = 0, 1, 2, 3 and 4. Using them, hand structures in isospin space are identified for states with nu = 0, 1, 2 and 3. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
An exactly solvable quantum field theory (QFT) model of Lee type is constructed to study how neutrino flavor eigenstates are created through interactions and how the localization properties of neutrinos follows from the parent particle that decays. The two-particle states formed by the neutrino and the accompanying charged lepton can be calculated exactly as well as their creation probabilities. We can show that the coherent creation of neutrino flavor eigenstates follows from the common negligible contribution of neutrino masses to their creation probabilities. on the other hand, it is shown that it is not possible to associate a well-defined flavor to coherent superpositions of charged leptons.
Resumo:
The extended linear complementarity problem (XLCP) has been introduced in a recent paper by Mangasarian and Pang. In the present research, minimization problems with simple bounds associated to this problem are defined. When the XLCP is solvable, their solutions are global minimizers of the associated problems. Sufficient conditions that guarantee that stationary points of the associated problems are solutions of the XLCP will be proved. These theoretical results support the conjecture that local methods for box constrained optimization applied to the associated problems could be efficient tools for solving the XLCP. (C) 1998 Elsevier B.V. All rights reserved.
Resumo:
In this work we develop an approach to obtain analytical expressions for potentials in an impenetrable box. In this kind of system the expression has the advantage of being valid for arbitrary values of the box length, and respect the correct quantum limits. The similarity of this kind of problem with the quasi exactly solvable potentials is explored in order to accomplish our goals. Problems related to the break of symmetries and simultaneous eigenfunctions of commuting operators are discussed.
Resumo:
Ladder operators can be constructed for all potentials that present the integrability condition known as shape invariance, satisfied by most of the exactly solvable potentials. Using the superalgebra of supersymmetric quantum mechanics, we construct the ladder operators for two exactly solvable potentials that present a subtle hidden shape invariance.
Resumo:
We present an integrable spin-ladder model, which possesses a free parameter besides the rung coupling J. Wang's system based on the SU(4) symmetry can be obtained as a special case. The model is exactly solvable by means of the Bethe ansatz method. We determine the dependence on the anisotropy parameter of the phase transition between gapped and gapless spin excitations and present the phase diagram. Finally, we show that the model is a special case of a more general Hamiltonian with three free parameters.
Resumo:
We study an exactly solvable two-dimensional model which mimics the basic features of the standard model. This model combines chiral coupling with an infrared behavior which resembles low energy QCD. This is done by adding a Podolsky higher-order derivative term in the gauge field to the Lagrangian of the usual chiral Schwinger model. We adopt a finite temperature regularization procedure in order to calculate the non-trivial fermionic Jacobian and obtain the photon and fermion propagators, first at zero temperature and then at finite temperature in the imaginary and real time formalisms. Both singular and non-singular cases, corresponding to the choice of the regularization parameter, are treated. In the nonsingular case there is a tachyonic mode as usual in a higher order derivative theory, however in the singular case there is no tachyonic excitation in the spectrum.