887 resultados para Pollen Morphology
Resumo:
The seasonal incidence of pollen in the atmosphere of Brisbane has been established from a near continuous. volumetric trapping program over the five-year period, July 1994-June 1999. Grass pollen accounts for 71.6% of the average annual pollen load with highest densities (up to 150 grains/m(3)) recorded in summer and autumn. Significant contributions were also made by taxa of the Cupressaceae (8.7%) and Urticaceae (1.8%) during spring and of the Pinaceae (4.5%) during winter. Pollen seasons of the Casuarinaceae (6.5%) and Myrtaceae (3.2%) are more extended, the former peaking in late winter and the latter in late spring. The onset and duration of the Poaceae and Urticaceae seasons varied from year to year, being later when precipitation levels were low in the late spring-early summer months. Total pollen numbers and grass pollen densities are substantially less than those recorded from southern Australia. Nevertheless, respiratory disease in Brisbane affects up to 10% of the population, and airborne pollen of Poaceae, Urticaceae, Cupressaceae, Pinaceae, and Myrtaceae have been implicated in the release of allergens.
Resumo:
Relationships between weather parameters andairborne pollen loads of Pinus inBrisbane, Australia have been investigated overthe five-year period, June 1994–May 1999.Pinus pollen accounts for 4.5% of the annualairborne pollen load in Brisbane where thePinus season is confined to the winter months,July–early September. During the samplingperiod loads of 11–>100 grains m3 wererecorded on 24 days and 1–10 grains m3 on204 days. The onset and peak dates wereconsistent across each season, whereas the enddates varied. The onset of the Pinuspollen season coincided with the coolestaverage monthly temperatures (< 22°C),lowest rainfall (< 7mm), and four weeks afterdaily minimum temperatures fell to 5–9°Cin late autumn. Correlations obtained betweendaily airborne Pinus pollen counts andtemperature/rainfall parameters show thatdensities of airborne Pinus pollen arenegatively correlated with maximum temperature(p < 0.0001), minimum temperature (p < 0.0001)and rainfall (p < 0.05) during the mainpollination period. The mean duration of eachpollen season was 52 days; longer seasons wereshown to be directly related to lower averageseasonal maximum temperatures (r2 = 0.85,p = 0.025). These results signify that maximumand minimum temperatures are the majorparameters that influence the onset andduration of the Pinus pollen season inthe environs of Brisbane. Respiratory allergyis an important health issue in Brisbane,Australia, but it remains unknown whether ornot airborne Pinus pollen is acontributing factor.
Resumo:
Recent laboratory studies have demonstrated that Prunus necrotic ringspot virus (PNRSV) (family Bromoviridae) can be readily transmitted when thrips and virus-bearing pollen are placed together on to test plants. For this transmission mechanism to result in stonefruit tree infection in the field, PNRSV-bearing pollen must be deposited onto surfaces of stonefruit trees on which thrips also occur. In a previous paper, we demonstrated that almost all pollen in a PNRSV-infected Japanese plum orchard in southeastern Queensland was deposited onto flowers, whereas few grains occurred on leaves and none on stems. Here, we present results of our investigation of thrips species composition, distribution and abundance on stonefruit trees in the same study area as our previous pollen deposition study. We collected a total of 2010 adult thrips from 13 orchards during the 1989, 1991 and 1992 flowering seasons of which all but 14 were in the suborder Terebrantia. Most (97.4%) terebrantian thrips were of three species, Thrips imaginis, Thrips australis and Thrips tabaci. Thrips tabaci as well as species mixtures that included T imaginis, T australis and T tabaci have been shown to transmit PNRSV via infected pollen in laboratory tests. Adult thrips were frequently collected from flowers but rarely from leaves and never from stems. Large and significant differences in numbers of T imaginis, T australis and T tabaci adults in flowers occurred among orchards and between seasons. No factor was conclusively related to thrips numbers but flowers of late-flowering stonefruit varieties tended to hold more thrips than those of early-flowering varieties. Our results indicate that the common thrips species present on stonefruit trees in the Granite Belt are also ones previously shown to transmit PNRSV via infected pollen in the laboratory and that these thrips are concentrated in stonefruit flowers where most stonefruit pollen is deposited. These results contribute to mounting circumstantial evidence that stonefruit flowers may be inoculated with PNRSV via an interaction of thrips with virus-bearing pollen and that this transmission mechanism may be an important cause of new tree infections in the field.
Resumo:
Experimental infections were used to track the fate of the dorsal sensilla of Merizocotyle icopae (Monogenea: Monocotylidae) from nasal tissue of the shovelnose ray, Rhinobatos typus (Rhinobatidae). Scanning and transmission electron microscopy revealed that 3 types of uniciliate dorsal sensilla exist at different times in the development of the monogenean. Type 1 sensilla have little or no invagination where the cilium exits the distal end of the dendrite and possess a ring of epidermis surrounding the cilium distal to the invagination. Type 2 sensilla have a deep invagination where the cilium exits the dendrite. Type 3 sensilla can be distinguished from the other types by the shape of the dendrite. The larvae have predominantly Type I dorsal sensilla, most of which are lost approximately 24 h after infection and a few Type 2 sensilla, which are retained. Additional Type 2 sensilla (termed Adult Type 2 sensilla), which are slightly different morphologically from the Type 2 sensilla of the larvae, form in later stages of development. Numerous Type 3 sensilla are unique to the dorsal surface of adults. Loss of all Type I sensilla upon attachment to the host, R. typus, suggests that these may be chemo- or mechanoreceptors responsible for host location by the swimming infective larvae. Type 2 sensilla appear to be important in the larvae, juveniles, and adults whereas the modality mediated by Type 3 is specific to adults. (C) 2003 Wiley-Liss, Inc.
Resumo:
This work reports on the influence of polarization and morphology of electroactive poly(vinylidene fluoride), PVDF, on the biological response of myoblast cells. Non-poled, ‘‘poled +’’ and “poled-“ -PVDF were prepared in the form of films. Further, random and aligned electrospun -PVDF fiber mats were also prepared. It is demonstrated that negatively charged surfaces improve cell adhesion and proliferation and that the directional growth of the myoblast cells can be achieved by the cell culture on oriented fibers. Therefore, the potential application of electroative materials for muscle regeneration is demonstrated.
Resumo:
Morphological characterization and aggregate stability is an important factor in evaluating management systems. The aim of this paper is to evaluate the stability and morphology of the aggregates of a dystrophic Oxisol managed with no-tillage and conventional tillage with and without the residual action of gypsum. The experimental design was randomized blocks arranged in split-split plot, where the treatments were two soil management systems (plots) with 0 and 2000 kg ha-1 of gypsum (subplots) and five depths (0-0.05, 0.05-0.10, 0.10-0.15, 0.15-0.20 and 0.20-0.30 m) as the subsubplots, with four replications. The aggregate morphology was determined through images and later evaluated by the Quantporo software. Stability was determined by the wet method. The results showed that the no-tillage system, with or without gypsum residual effect, provided the aggregates with the largest geometric diameters. The combination of no-tillage system and the gypsum residual effect provided rougher aggregates.
Resumo:
Poly(vinylidene fluoride) electrospun membranes have been prepared with different NaY zeolite contents up to 32%wt. Inclusion of zeolites induces an increase of average fiber size from ~200 nm in the pure polymer up to ~500 nm in the composite with 16%wt zeolite content. For higher filler contents, a wider distribution of fibers occurs leading to a broader size distributions between the previous fiber size values. Hydrophobicity of the membranes increases from ~115º water contact angle to ~128º with the addition of the filler and is independent on filler content, indicating a wrapping of the zeolite by the polymer. The water contact angle further increases with fiber alignment up to ~137º. Electrospun membranes are formed with ~80 % of the polymer crystalline phase in the electroactive phase, independently on the electrospinning processing conditions or filler content. Viability of MC3T3-E1 cells on the composite membranes after 72 h of cell culture indicates the suitability of the membranes for tissue engineering applications.
Resumo:
In the last years, a rising trend of pollen allergies in urban areas has been attributed to atmospheric pollution. In this work, we investigated the effects of SO2 and NO2 on the protein content, allergenicity, and germination rate of Acer negundo pollen. A novel environmental chamber was assembled to exposure pollen samples with SO2 or NO2 at two different levels: just below and two times the atmospheric hour-limit value acceptable for human health protection in Europe. Results showed that protein content was lower in SO2- exposed pollen samples and slightly higher in NO2-exposed pollen compared to the control sample. No different polypeptide profiles were revealed by SDSPAGE between exposed and nonexposed pollen, but the immunodetection assays indicated higher IgE recognition by all sera of sensitized patients to Acer negundo pollen extracts in all exposed samples in comparison to the nonexposed samples. A decrease in the germination rate of exposed in contrast to nonexposed pollen was verified, which was more pronounced for NO2-exposed samples. Our results indicated that in urban areas, concentrations of SO2 and NO2 below the limits established for human protection can indirectly aggravate pollen allergy on predisposed individuals and affect plant reproduction.
Resumo:
The characteristic topographical features (crystallite dimensions, surface morphology and roughness) of bioceramics may influence the adsorption of proteins relevant to bone regeneration. This work aims at analyzing the influence of two distinct nanophased hydroxyapatite (HA) ceramics, HA725 and HA1000 on fibronectin (FN) and osteonectin (ON) adsorption and MC3T3-E1 osteoblast adhesion and morphology. Both substrates were obtained using the same hydroxyapatite nanocrystals aggregates and applying the sintering temperatures of 725ºC and 1000ºC, respectively. The two proteins used in this work, FN as an adhesive glycoprotein and ON as a counter-adhesive protein, are known to be involved in the early stages of osteogenesis (cell adhesion, mobility and proliferation). The properties of the nanoHA substrates had an important role in the adsorption behavior of the two studied proteins and clearly affected the MC3T3- E1 morphology, distribution and metabolic activity. HA1000 surfaces presenting slightly larger grain size, higher root-mean-square roughness (Rq), lower surface area and porosity, allowed for higher amounts of both proteins adsorbed. These substrates also revealed increased number of exposed FN cell-binding domains as well as higher affinity for osteonectin. Regarding the osteoblast adhesion results, improved viability and cell number were found for HA1000 surfaces as compared to HA725 ones, independently of the presence or type of adsorbed protein. Therefore the osteoblast adhesion and metabolic activity seemed to be more sensitive to surfaces morphology and roughness than to the type of adsorbed proteins.
Resumo:
The main objective of this work was to evaluate the hypothesis that the greater transfer stability leads also to less volume of fumes. Using an Ar + 25%CO2 blend as shielding gas and maintaining constant the average current, wire feed speed and welding speed, bead-on-plate welds were carried out with plain carbon steel solid wire. The welding voltage was scanned to progressively vary the transfer stability. Using two conditions of low stability and one with high stability, fume generation was evaluated by means of the AWS F1.2:2006 standard. The influence of these conditions on fume morphology and composition was also verified. A condition with greater transfer stability does not generate less fume quantity, despite the fact that this condition produces fewer spatters. Other factors such as short-circuit current, arcing time, droplet diameters and arc length are the likely governing factors, but in an interrelated way. Metal transfer stability does not influence either the composition or the size/morphology of fume particulates. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
The morphological and structural modifications induced in sapphire by surface treatment with femtosecond laser radiation were studied. Single-crystal sapphire wafers cut parallel to the (0 1 2) planes were treated with 560 fs, 1030 nm wavelength laser radiation using wide ranges of pulse energy and repetition rate. Self-ordered periodic structures with an average spatial periodicity of similar to 300 nm were observed for fluences slightly higher than the ablation threshold. For higher fluences the interaction was more disruptive and extensive fracture, exfoliation, and ejection of ablation debris occurred. Four types of particles were found in the ablation debris: (a) spherical nanoparticles about 50 nm in diameter; (b) composite particles between 150 and 400 nm in size; (c) rounded resolidified particles about 100-500 nm in size; and (d) angular particles presenting a lamellar structure and deformation twins. The study of those particles by selected area electron diffraction showed that the spherical nanoparticles and the composite particles are amorphous, while the resolidified droplets and the angular particles, present a crystalline a-alumina structure, the same of the original material. Taking into consideration the existing ablation theories, it is proposed that the spherical nanoparticles are directly emitted from the surface in the ablation plume, while resolidified droplets are emitted as a result of the ablation process, in the liquid phase, in the low intensity regime, and by exfoliation, in the high intensity regime. Nanoparticle clusters are formed by nanoparticle coalescence in the cooling ablation plume. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
In an attempt to be as close as possible to the infected and treated patients of the endemic areas of schistosomiasis (S. mansoni) and in order to achieve a long period of follow-up, mice were repeatedly infected with a low number of cercariae. Survival data and histological variables such as schistosomal granuloma, portal changes, hepatocellular necrosis, hepatocellular regeneration, schistosomotic pigment, periductal fibrosis and chiefly bile ducts changes were analysed in the infected treated and non treated mice. Oxamniquine chemotherapy in repeatedly infected mice prolonged survival significantly when compared to non-treated animals (chi-square 9.24, p = 0.0024), thus confirming previous results with a similar experimental model but with a shorter term follow-up. Furthermore, mortality decreased rapidly after treatment suggesting an abrupt reduction in the severity of hepatic lesions. A morphological and immunohistochemical study of the liver was carried out. Portal fibrosis, with a pattern resembling human Symmers fibrosis was present at a late phase in the infected animals. Bile duct lesions were quite close to those described in human Mansonian schistosomiasis. Schistosomal antigen was observed in one isolated altered bile duct cell. The pathogenesis of the bile duct changes and its relation to the parasite infection and/or their antigens are discussed.
Resumo:
Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina