990 resultados para Pluto - planets and satellites
Resumo:
Reseña del congreso WePreserve 2009 que tuvo lugar los pasados 23 al 27 de marzo en Barcelona, organizadopor la Facultad de Biblioteconomía y Documentación de la Universitat de Barcelona, con la colaboración del Institut d'Estudis Catalans, la Biblioteca de Catalunya y el Consorci de Biblioteques de Barcelona. El seminario 2009 WePreserve se celebra anualmente desde el año 2007 y participan todas las figuras de referencia europeas en materia de investigación en sistemas y metodologías que garantizan la preservación digital de los documentos: Digital Preservation Europe (DPE), Preservation and Long-term Access Through Networked Services (Planets), Cultural Artistic and Scientific Knowledge for Preservation, Access and Retrieval (CASPAR), y Network of expertise in Digital long-term preservation (nestor).
Resumo:
Bajo la forma de preguntas y respuestas trata de despertar la curiosidad por la astronomía haciendo hincapié en las características e interrelaciones de las estrellas y planetas en nuestra galaxia. Exploran diversos aspectos de la astronomía, incluyendo el sistema solar, estrellas, planetas, lunas, asteroides y cometas. Recomendado para niños de ocho a doce años.
Resumo:
In terms of stability around the primary, it is widely known that the semimajor axis of the retrograde satellites is much larger than the corresponding semimajor axis of the prograde satellites. Usually this conclusion is obtained numerically, since precise analytical derivation is far from being easy, especially, in the case of two or more disturbers. Following the seminal idea that what is unstable in the restricted three-body problem is also unstable in the general N-body problem, we present a simplified model which allows us to derive interesting resonant configurations. These configurations are responsible for cumulative perturbations which can give birth to strong instability that may cause the ejection of the satellite. Then we obtain, analytically, approximate bounds of the stability of prograde and retrograde satellites. Although we recover quite well previous results of other authors, we comment very briefly some weakness of these bounds. Copyright (c) 2008 Tadashi Yokoyama et al.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The dynamics of a pair of satellites similar to Enceladus-Dione is investigated with a two-degrees-of-freedom model written in the domain of the planar general three-body problem. Using surfaces of section and spectral analysis methods, we study the phase space of the system in terms of several parameters, including the most recent data. A detailed study of the main possible regimes of motion is presented, and in particular we show that, besides the two separated resonances, the phase space is replete of secondary resonances.
Resumo:
The Cassini-Huygens arrival into the Saturnian system brought a large amount of data about the satellites and rings. Two diffuse rings were found in the region between the A ring and Prometheus. R/2004 S1 is coorbital to Atlas and R/2004 S2 is close to Prometheus. In this work we analysed the closest approach between Prometheus and both rings. As a result we found that the satellite removes particles from R/2004 S2 ring. Long-term numerical simulations showed that some particles can cross the F ring region . The well known region of the F ring, where small satellites are present and particles are being taking from the ring, gains a new insight with the presence of particles from R/2004 S2 ring. The computation of the Lyapunov Characteristic Exponent reveled that the R/2004 S2 ring lies in a chaotic region while R/2004 S1 ring and Atlas are in a stable region. Atlas is responsible for the formation of three regimes in the R/2004 S1 ring, as expected for a satellite embedded in a ring.
Resumo:
The irregular satellites of Jupiter are believed to be captured asteroids or planetesimals. In the present work is studied the direction of capture of these objects as a function of their orbital inclination. We performed numerical simulations of the restricted three-body problem, Sun-Jupiter-particle, taking into account the growth of Jupiter. The integration was made backward in time. Initially, the particles have orbits as satellites of Jupiter, which has its present mass. Then, the system evolved with Jupiter losing mass and the satellites escaping from the planet. The reverse of the escape direction corresponds to the capture direction. The results show that the Lagrangian points L1 and L2 mainly guide the direction of capture. Prograde satellites are captured through these two gates with very narrow amplitude angles. In the case of retrograde satellites, these two gates are wider. The capture region increases as the orbital inclination increases. In the case of planar retrograde satellites the directions of capture cover the whole 360 degrees around Jupiter. We also verified that prograde satellites are captured earlier in actual time than retrograde ones.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The dynamics of some fictitious satellites of Venus and Mars are studied considering only solar perturbation and the oblateness of the planet, as disturbing forces. Several numerical integrations of the averaged system, taking different values of the obliquity of ecliptic (a), show the existence of strong chaotic motion, provided that the semi major axis is near a critical value. As a consequence, large increase of eccentricities occur and the satellites may collide with the planet or cross possible internal orbits. Even starting from almost circular and equatorial orbits, most satellites can easily reach prohibitive values. The extension of the chaotic zone depends clearly on the value ε, so that, previous regular regions may become chaotic, provided ε increases sufficiently. © 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Some orbital characteristics of lunar artificial satellites is presented taking into account the perturbation of the third-body in elliptical orbit and the non-uniform distribution of mass of the Moon. We consider the development of the non-sphericity of the Moon in zonal spherical harmonics up to the ninth order and sectorial harmonic C 22 due to the lunar equatorial ellipticity. The motion of the artificial satellite is studied under the single-averaged analytical model. The average is applied to the mean anomaly of the satellite to analyze low-altitude orbits which are of highest importance for future lunar missions. We found families of frozen orbits with long lifetimes for the problem of an orbiter travelling around the Moon.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper were studied regions close to the Roche lobe of a planet like Jupiter, in order to find regions with low velocities. We simulated a two dimensional and non-self-gravitating disk, where tidal and viscous torques are considered, using the hydrodynamic numerical integrator FARGO 2D. As stated earlier we are interested in find low velocities regions for in future works study the possibility of satellites formation in these regions.