983 resultados para Platelet aggregation inhibitors


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Inappropriate platelet aggregation creates a cardiovascular risk that is largely managed with thienopyridines and aspirin. Although effective, these drugs carry risks of increased bleeding and drug 'resistance', underpinning a drive for new antiplatelet agents. To discover such drugs, one strategy is to identify a suitable druggable target and then find small molecules that modulate it. A good and unexploited target is the platelet collagen receptor, GPVI, which promotes thrombus formation. To identify inhibitors of GPVI that are safe and bioavailable, we docked a FDA-approved drug library into the GPVI collagen-binding site in silico. We now report that losartan and cinanserin inhibit GPVI-mediated platelet activation in a selective, competitive and dose-dependent manner. This mechanism of action likely underpins the cardioprotective effects of losartan that could not be ascribed to its antihypertensive effects. We have, therefore, identified small molecule inhibitors of GPVI-mediated platelet activation, and also demonstrated the utility of structure-based repurposing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Platelet aggregation and phosphorylation of phospholipase Cγ2 induced by collagen were attenuated in ADAP(-/-) platelets. However, aggregation and signaling induced by collagen-related peptide (CRP), a GPVI-selective agonist, were largely unaffected. Platelet adhesion to CRP was also unaffected by ADAP deficiency. Adhesion to the α(2) β(1) -selective ligand GFOGER and to a peptide (III-04), which supports adhesion that is dependent on both GPVI and α(2) β(1), was reduced in ADAP(-/-) platelets. An impedance-based label-free detection technique, which measures adhesion and spreading of platelets, indicated that, in the absence of ADAP, spreading on GFOGER was also reduced. This was confirmed with non-fluorescent differential-interference contrast microscopy, which revealed reduced filpodia formation in ADAP(-/-) platelets adherent to GFOGER. This indicates that ADAP plays a role in mediating platelet activation via the collagen-binding integrin α(2) β(1). In addition, we found that ADAP(-/-) mice, which are mildly thrombocytopenic, have enlarged spleens as compared with wild-type animals. This may reflect increased removal of platelets from the circulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We identify gAd as a novel ligand for GPVI that stimulates tyrosine kinase-dependent platelet aggregation. Our data raise the possibility that gAd may promote unwanted platelet activation at sites of vascular injury.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have recently shown that the C-type lectin-like receptor, CLEC-2, is expressed on platelets and that it mediates powerful platelet aggregation by the snake venom toxin rhodocytin. In addition, we have provided indirect evidence for an endogenous ligand for CLEC-2 in renal cells expressing HIV-1. This putative ligand facilitates transmission of HIV through its incorporation into the viral envelope and binding to CLEC-2 on platelets. The aim of the present study was to identify the ligand on these cells which binds to CLEC-2 on platelets. Recombinant CLEC-2 exhibits specific binding to HEK-293T (human embryonic kidney) cells in which the HIV can be grown. Furthermore, HEK-293T cells activate both platelets and CLEC-2-transfected DT-40 B-cells. The transmembrane protein podoplanin was identified on HEK-293T cells and was demonstrated to mediate both binding of HEK-293T cells to CLEC-2 and HEK-293T cell activation of CLEC-2-transfected DT-40 B-cells. Podoplanin is expressed on renal cells (podocytes). Furthermore, a direct interaction between CLEC-2 and podoplanin was confirmed using surface plasmon resonance and was shown to be independent of glycosylation of CLEC-2. The interaction has an affinity of 24.5+/-3.7 microM. The present study identifies podoplanin as a ligand for CLEC-2 on renal cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pre-eclampsia (PE) complicates around 3% of all pregnancies and is one of the most common causes of maternal mortality worldwide. The pathophysiology of PE remains unclear however its underlying cause originates from the placenta and manifests as raised blood pressure, proteinuria, vascular or systemic inflammation and hypercoagulation in the mother. Women who develop PE are also at significantly higher risk of subsequently developing cardiovascular (CV) disease. In PE, the failing endoplasmic reticulum, oxidative and inflammatory stressed syncytiotrophoblast layer of the placenta sheds increased numbers of syncytiotrophoblast extracellular vesicles (STBEV) into the maternal circulation. Platelet reactivity, size and concentration are also known to be altered in some women who develop PE, although the underlying reasons for this have not been determined. In this study we show that STBEV from disease free placenta isolated ex vivo by dual placental perfusion associate rapidly with platelets. We provide evidence that STBEV isolated from normal placentas cause platelet activation and that this is increased with STBEV from PE pregnancies. Furthermore, treatment of platelets with aspirin, currently prescribed for women at high risk of PE to reduce platelet aggregation, also inhibits STBEV-induced reversible aggregation of washed platelets. Increased platelet reactivity as a result of exposure to PE placenta derived STBEVs correlates with increased thrombotic risk associated with PE. These observations establish a possible direct link between the clotting disturbances of PE and dysfunction of the placenta, as well as the known increased risk of thromboembolism associated with this condition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE: Thiol isomerases facilitate protein folding in the endoplasmic reticulum, and several of these enzymes, including protein disulfide isomerase and ERp57, are mobilized to the surface of activated platelets, where they influence platelet aggregation, blood coagulation, and thrombus formation. In this study, we examined the synthesis and trafficking of thiol isomerases in megakaryocytes, determined their subcellular localization in platelets, and identified the cellular events responsible for their movement to the platelet surface on activation. APPROACH AND RESULTS: Immunofluorescence microscopy imaging was used to localize protein disulfide isomerase and ERp57 in murine and human megakaryocytes at various developmental stages. Immunofluorescence microscopy and subcellular fractionation analysis were used to localize these proteins in platelets to a compartment distinct from known secretory vesicles that overlaps with an inner cell-surface membrane region defined by the endoplasmic/sarcoplasmic reticulum proteins calnexin and sarco/endoplasmic reticulum calcium ATPase 3. Immunofluorescence microscopy and flow cytometry were used to monitor thiol isomerase mobilization in activated platelets in the presence and absence of actin polymerization (inhibited by latrunculin) and in the presence or absence of membrane fusion mediated by Munc13-4 (absent in platelets from Unc13dJinx mice). CONCLUSIONS: Platelet-borne thiol isomerases are trafficked independently of secretory granule contents in megakaryocytes and become concentrated in a subcellular compartment near the inner surface of the platelet outer membrane corresponding to the sarco/endoplasmic reticulum of these cells. Thiol isomerases are mobilized to the surface of activated platelets via a process that requires actin polymerization but not soluble N-ethylmaleimide-sensitive fusion protein attachment receptor/Munc13-4-dependent vesicular-plasma membrane fusion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Platelet aggregates were studied in dogs with induced arterial thrombosis, by the method of Wu and Hoak. Blood was withdrawn from a jugular vein and from the femoral vein on the operated side 24 h after thrombus induction and immediately and 2 h after blood flow was restored by thrombectomy. Platelet activation was significant in dogs with obstructive arterial thrombosis and which tended to subside after thrombectomy. Activation or formation of platelet aggregates seemed to occur in the ischemic limb. It is suggested that this experimental model could be useful to test the action of anti-platelet drugs in vivo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Platelet function and plasma fibrinogen levels were evaluated in 14 patients, 10 males and 4 females, aged 13-59 years bitten by Bothrops genus snakes. There was a statistical difference (p < 0.05) among plasma fibrinogen levels evaluated 24 and 48 hours after envenomation. There was a tendency towards normalization after 48 hours of treatment. The low platelet number was clear in 24-48 hour evaluations with a tendency towards normalization after 48 hours of treatment (p < 0.05). When platelet function was stimulated by collagen and epinephrine, it appeared to be within normal values. On the other hand, when it was stimulated by adenosine diphosphate (ADP), platelet function was hypoaggregated by a single micromol concentration until 48 hours after treatment. At a 3 micromol concentration, there were alterations only before specific treatment (p < 0.05). Fibrinogen levels and fibrin degradation product (FDP) levels appeared to be altered in 83.33% of patients evaluated. The authors suggest that platelet hypoaggregation is related to decreased fibrinogen and increased FDP levels.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study investigates the thrombocyte aggregation process in the South American fresh water turtle (Phrynopys hilarii) using electron microscopy. Blood was taken from surgically exposed lateral neck vessels often turtles Phrynopys hilarii during the spring and summer seasons, when the mean temperature is 37°C. Blood samples were fixed with Karnovsky solution for processing by transmission electron microscopy. The turtle thrombocytes were spindle-shaped with lobulated nuclei. Prominent vesicles and canaliculi were found throughout the cytoplasm. The cytoplasm organelles showed an agranular endoplasmatic reticulum, Golgi complex near the centrioles and scattered free ribosomes. These cells are similar to bird thrombocytes but distinct from fish and frog thrombocytes. Blood clotting time was 5 min ± 30 sec measured by the Lee and White method. Structural alterations resulting from the aggregation process occurred after activation. Thrombocytes developed numerous filopodial projections, an increased number of vacuoles and changed from spindle to spherical shape. P. hilarii thrombocytes have different morphologic characteristics compared to other non-mammalian vertebrate cells. These cells can participate in the aggregation process, as observed in birds.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tithonia diversifolia, also known as Mexican arnica, has been used in traditional medicine to treat inflammatory refractory with absence of citotoxicity. The possible health risks associated with the consumption of ingestion of the infusion (tea) plant makes it is necessary to identify the potential pharmacological activity or toxicity to prove certain plants that are acclimated in Brazil. Considering the limited number of pharmacological studies regarding the Tithonia diversifolia, the aim of this study was evaluate the effects of this infusion in platelet aggregation. Venous blood was collected with informed consent from healthy volunteers who denied taking any medication in the previous 14 days. Whole blood was transferred into polypropylene tubes containing one-tenth of final volume of acid citrate dextrose (ACD-C; citric acid 3%, trisodium citrate 4%, glucose 2%; 1:9 v/v) and centrifuged at 200g for 15 min. Platelet rich plasma was added of wash buffer solution (NaCl 140mM, KCl 5mM, sodium citrate 12mM, glucose 10mM and saccharose 12mM; pH 6; 5:7 v/v) and centrifuged at 800g for 12 min at 20°C. Platelet pellet was gently resuspended in Krebs-Ringer solution and counts were performed on a Neubauer chamber. Aggregation assay was carried out with 400 μL of platelet suspension (1.2x10 8 platelets/mL) in a cuvette at 37°C with constant stirring. Platelet suspension was incubated for 3 min with aqueous extract infusion (0.6-20μg/mL) prior to addition of thrombin (100 mU/mL). Percentage of platelet aggregation was recorded with an aggregometer (Chrono-log Lumi-Aggregometer model 560-Ca, USA). Our results show an inhibition of thrombin induced platelet aggregation in the presence of 0.6-20 ug/mL Tithonia diversifolia infusion leaves. The Tithonia diversifolia infusion leaves inhibits thrombin induced washed platelet aggregation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Atherosclerosis is a chronic inflammatory disease characterized by accumulation of lipid and fibrous components in arterial vessels, giving rise to atheromas. Development of Atheromatou plaques leads to arterial steatosis, triggering ischemic events. Atherotrombosis has a strong correlation with atherosclerosis, where rupture of atheromatous plaques cause release of vessel wall's pro-thrombotic components, activating platelet aggregation and thromosis. Due to the major role played by platelets on thrombus-embolic conditions, drugs that inhibit platelet aggregation demonstrate great relevance for atherothrombosis prevention, reducing patient mortality. Currently, there are a variety of drugs acting on several different targets, preventing platelet activation. However, these therapies demosntrate side effects such as thrombocytopenia, neutropenia, hemorrhage and low oral availability. Thus, the application of molecular modifications such as hybridization can produce novel, more efficient antiplatelet aggregation inhibitors. In this project we describe the synthesis and characterization of novel N-acilhydrazone compounds, acting through multiple mechanisms such as platelet calcium chelation and nitric oxide donation by furoxanic subunits. Furthermore, we demonstrate that such compounds exhibit biological activity in in vivo bleeding time, in vitro antiplatelet aggregation and in vivo antinociceptive assays. Therefore, novel N-acilhydrazone compounds demonstrate potential as antiplatelet drugs for atherothrombosis prevention.