847 resultados para Plasma-glucose
Resumo:
The aim of the study was to assess the relation of adiponectin levels with the metabolic syndrome in Asian Indians, a high-risk group for diabetes and premature coronary artery disease. The study was conducted on 100 (50 men and 50 women) type 2 diabetic subjects and 100 age and sex matched subjects with normal glucose tolerance selected from the Chennai Urban Rural Epidemiology Study, an ongoing population study in Chennai in southern India. Metabolic syndrome was defined using modified Adult Treatment Panel III (ATPIII) guidelines. Adiponectin values were significantly lower in diabetic subjects (men: 5.2 vs 8.3 microg/mL, P=.00l; women: 7.6 vs 11.1 microg/mL, P<.00l) and those with the metabolic syndrome (men: 5.0 vs 6.8 microg/mL, P=.01; women: 6.5 vs 9.9 microg/mL, P=.001) compared with those without. Linear regression analysis revealed adiponectin to be associated with body mass index (P<.05), waist circumference (P<.01), fasting plasma glucose (P=.001), glycated hemoglobin (P<.001), triglycerides (P<.00l), high-density lipoprotein (HDL) cholesterol (P<.001), cholesterol/HDL ratio (P<.00l), and insulin resistance measured by homeostasis assessment model (P<.00l). Factor analysis identified 2 factors: factor 1, negatively loaded with adiponectin and HDL cholesterol and positively loaded with triglycerides, waist circumference, and insulin resistance measured by homeostasis assessment model; and factor 2, with a positive loading of waist circumference and systolic and diastolic blood pressure. Logistic regression analysis revealed adiponectin to be negatively associated with metabolic syndrome (odds ratio [OR], 0.365; P<.001) even after adjusting for age (OR, 0.344; P<.00l), sex (OR, 0.293; P<.001), and body mass index (OR, 0.292; P<.00l). Lower adiponectin levels are associated with the metabolic syndrome per se and several of its components, particularly, diabetes, insulin resistance, and dyslipidemia in this urban south Indian population.
Resumo:
Background Emerging cellular markers of endothelial damage and repair include endothelial microparticles (EMPs) and endothelial progenitor cells (EPCs) respectively. Effects of long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) and influence of genetic background on these markers are not known. Objective This study investigated the effects of fish oil supplementation on both classical and novel markers of endothelial function in subjects prospectively genotyped for the Asp298 eNOS polymorphism and at moderate risk of CVD. Design 84 subjects with moderate risk of CVD (n=40 GG and n=44 GT/TT) completed a randomized, double-blind, placebo-controlled, 8-week cross-over trial of fish oil supplementation providing 1.5 g/d LC n-3 PUFA. Effects of genotype and fish oil supplementation on the blood lipid profile, inflammatory markers, vascular function (EndoPAT) and numbers of circulating EPCs and EMP (flow cytometry) were assessed. Results There was no significant effect of fish oil supplementation on blood pressure, plasma lipids or plasma glucose, although there was a trend (P = 0.069) towards a decrease in plasma TG concentration after FO supplementation compared to placebo. GT/TT subjects tended to have higher levels of total cholesterol and LDL-cholesterol, but vascular function was not affected by either treatment or eNOS genotype. Biochemical markers of endothelial function were also unaffected by treatment and eNOS genotype. In contrast, there was a significant effect of fish oil supplementation on cellular markers of endothelial function. Fish oil supplementation increased numbers of EPCs and reduced numbers of EMPs relative to the placebo, potentially favouring maintenance of endothelial integrity. There was no influence of genotype for any of the cellular markers of endothelial function, indicating that the effects of fish oil supplementation were independent of eNOS genotype. Conclusions Emerging cellular markers of endothelial damage, integrity and repair appear to be sensitive to potentially beneficial modification by dietary n-3 PUFA.
Resumo:
The aim of this study was to evaluate the role of cyclooxygenase (COX) in venous vascular reactivity changes after an oral lipid overload (OLO). Venous endothelial function (dorsal hand vein technique) was evaluated in fasting, 30 minutes after COX inhibition (aspirin-fasting), 2 to 4 hours after an OLO (1000 kcal, 58% fat), and again after COX inhibition (aspirin-OLO, 600 mg/200 mL water) in 10 healthy adults (age, 28.1 +/- 1.3 years; body mass index, 22.3 +/- 0.6 kg/m(2)). Fasting, 2- to 4-hour post-OLO, and 60-minute postaspirin plasma glucose, insulin, and lipids were also evaluated. The OLO increased triglycerides and insulin, reduced low-density lipoprotein and high-density lipoprotein, but glycemia and total cholesterol remained unchanged. There were no metabolic differences between OLO and aspirin-OLO. In fasting, aspirin reduced acetylcholine-induced venodilation (107.0% +/- 14% versus 57.3% +/- 11%; P < 0.001). Vascular reactivity was blunted after the OLO (phenylephrine dose: 0.3 +/- 0.2 fasting versus 1.9 +/- 0.8 nmol/min after OLO; P < 0.001) and was partially corrected by aspirin (0.4 +/- 0.2; P < 0.001). Similar changes were observed in maximum venodilation after acetylcholine (107.0% +/- 14% fasting versus 60.4% +/- 9% after OLO, P < 0.001; aspirin-OLO: 95.9% +/- 6%; P < 0.001). The responses to sodium nitroprusside remained unchanged during the study. We conclude that the OLO reduction in the endothelium-dependent venoconstruction and venodilation is partially the result of the action of COX.
Resumo:
It is known that the circadian rhythm in hepatic phosphoenolpyruvate carboxykinase expression (a limiting catalytic step of gluconeogenesis) and hepatic glucose production is maintained by both daily oscillation in autonomic inputs to the liver and night feeding behavior. However, increased glycemia and reduced melatonin (Mel) levels have been recently shown to coexist in diabetic patients at the end of the night period. In parallel, pinealectomy (PINX) is known to cause glucose intolerance with increased basal glycemia exclusively at the end of the night. The mechanisms that underlie this metabolic feature are not completely understood. Here, we demonstrate that PINX rats show night-time hepatic insulin resistance characterized by reduced insulin-stimulated RAC-alpha serine/threonine-protein kinase phosphorylation and increased phosphoenolpyruvate carboxykinase expression. In addition, PINX rats display increased conversion of pyruvate into glucose at the end of the night. The regulatory mechanism suggests the participation of unfolded protein response (UPR), because PINX induces night-time increase in activating transcription factor 6 expression and prompts a circadian fashion of immunoglobulin heavy chain-binding protein, activating transcription factor 4, and CCAAT/enhancer-binding protein-homologous protein expression with Zenith values at the dark period. PINX also caused a night-time increase in Tribble 3 and regulatory-associated protein of mammalian target of rapamycin; both were reduced in liver of PINX rats treated with Mel. Treatment of PINX rats with 4-phenyl butyric acid, an inhibitor of UPR, restored night-time hepatic insulin sensitivity and abrogated gluconeogenesis in PINX rats. Altogether, the present data show that a circadian oscillation of UPR occurs in the liver due to the absence of Mel. The nocturnal UPR activation is related with night-time hepatic insulin resistance and increased gluconeogenesis in PINX rats. (Endocrinology 152: 1253-1263, 2011)
Resumo:
Obesity and insulin resistance are rapidly expanding public health problems. These disturbances are related to many diseases, including heart pathology. Acting through the Akt/mTOR pathway, insulin has numerous and important physiological functions, such as the induction of growth and survival of many cell types and cardiac hypertrophy. However, obesity and insulin resistance can alter mTOR/p70S6k. Exercise training is known to induce this pathway, but never in the heart of diet-induced obesity subjects. To evaluate the effect of exercise training on mTOR/p70S6k in the heart of obese Wistar rats, we analyzed the effects of 12 weeks of swimming on obese rats, induced by a high-fat diet. Exercise training reduced epididymal fat, fasting serum insulin and plasma glucose disappearance. Western blot analyses showed that exercise training increased the ability of insulin to phosphorylate intracellular molecules such as Akt (2.3-fold) and Foxo1 (1.7-fold). Moreover, reduced activities and expressions of proteins, induced by the high-fat diet in rats, such as phospho-JNK (1.9-fold), NF-kB (1.6-fold) and PTP-1B (1.5-fold), were observed. Finally, exercise training increased the activities of the transduction pathways of insulin-dependent protein synthesis, as shown by increases in Raptor phosphorylation (1.7-fold), p70S6k phosphorylation (1.9-fold), and 4E-BP1 phosphorylation (1.4-fold) and a reduction in atrogin-1 expression (2.1-fold). Results demonstrate a pivotal regulatory role of exercise training on the Akt/ mTOR pathway, in turn, promoting protein synthesis and antagonizing protein degradation. J. Cell. Physiol. 226: 666-674, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
Patients with chronic kidney disease are at higher risk of developing cardiovascular disease. The complex, interaction between the kidney and the cardiovascular system is incompletely understood, particularly at the early stages of the cardiovascular continuum. The overall aim of this thesis was to clarify novel aspects of the interplay between the kidney and the cardiovascular system at different stages of the cardiovascular continuum; from risk factors such as insulin resistance, inflammation and oxidative stress, via sub-clinical cardiovascular damage such as endothelial dysfunction and left ventricular dysfunction, to overt cardiovascular death. This thesis is based on two community-based cohorts of elderly, Uppsala Longitudinal Study of Adult Men (ULSAM) and Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS). The first study, show that higher insulin sensitivity, measured with euglycemic-hyperinsulinemic clamp technique was associated to improve estimated glomerular filtration rate (eGFR) in participants with normal fasting plasma glucose, normal glucose tolerance and normal eGFR. In longitudinal analyses, higher insulin sensitivity at baseline was associated with lower risk of impaired renal function during follow-up. In the second study, eGFR was inversely associated with different inflammatory markers (C-reactive protein, interleukin-6, serum amyloid A) and positively associated with a marker of oxidative stress (urinary F2-isoprostanes). In line with this, the urinary albumin/creatinine ratio was positively associated with these inflammatory markers, and negatively associated with oxidative stress. In study three, higher eGFR was associated with better endothelial function as assessed by the invasive forearm model. Further, in study four, higher eGFR was significantly associated with higher left ventricular systolic function (ejection fraction). The 5th study of the thesis shows that higher urinary albumin excretion rate (UAER) and lower eGFR was independently associated with an increased risk for cardiovascular mortality. Analyses of global model fit, discrimination, calibration, and reclassification suggest that UAER and eGFR add relevant prognostic information beyond established cardiovascular risk factors in participants without prevalent cardiovascular disease. Conclusion: this thesis show that the interaction between the kidney and the cardiovascular system plays an important role in the development of cardiovascular disease and that this interplay begins at an early asymptomatic stage of the disease process.
Resumo:
The aim of this study was to determine the toxicity of the aqueous extract of neem leaves, a product extensively used in fish-farms as alternative for the control of fish parasites and fish fry predators, for the neotropical fish Prochilodus lineatus. The 24 It LC(50) of neem leaf extract for juveniles P lineatus was estimated as 4.8 g L(-1); the fish were then exposed for 24 h to 2.5, 5.0 and 7.5 g L(-1) or only clean water (control). Plasma glucose levels were higher in fish exposed to 2.5 g L(-1) and 5.0 g L(-1) neem extract, relative to control, indicating a typical stress response. Neem extract did not interfere with the osmoregulating capacity of the fish, as their plasma sodium, chloride, total protein and osmolarity did not change. The presence of the biopesticide interfered with the antioxidant defense system of P. lineatus, as there was a decrease in liver catalase activity at all neem concentrations and the detoxifying enzyme glutathione-S-transferase was activated in fish exposed to 5.0 g L(-1). Fish exposed to all neem extract concentrations exhibited damaged gill and kidney tissue. These results indicate that although neem extract is less toxic to P. lineatus than other synthetic insecticides used in fish-farming it does cause functional and morphological changes in this fish species. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Os objetivos deste trabalho foram testar a eficiência do sal como redutor de estresse e verificar a melhor densidade de transporte de juvenis de tambaqui (Colossoma macropomun) em caixas de plástico adaptadas. No primeiro experimento foram testadas diferentes concentrações de sal de cozinha (NaCl) na água; no segundo, o transporte foi realizado por três horas em caixas de plástico de 200 L estocadas com diferentes densidades de peixe, com 8 g de sal/L de água. O cortisol plasmático dos peixes sofreu aumento significativo após o transporte no tratamento sem sal e com 2 g de sal/L de água, retornando para níveis normais após 96 horas. A glicose plasmática dos peixes sofreu aumento após o transporte em todas as concentrações de sal testadas, com exceção da com 8 g/L de água, retornando para níveis normais em 24 horas. Nos peixes transportados no segundo experimento, com 8 g de sal/L de água, não foi verificada mudança significativa no cortisol plasmático, mas a glicose aumentou significativamente em todas as densidades após o transporte, retornando para níveis normais em 24 horas. Houve mortalidade de 11% em uma das repetições da densidade de 200 kg/m³ de água. Para o transporte com 8 g de sal/L de água, a densidade máxima deve ser de 150 kg/m³ de água. Nesta densidade os parâmetros físico-químicos de qualidade de água se mantêm com características adequadas, as respostas ao estresse são mínimas e não há mortalidade.
Resumo:
This study evaluated the effect of extract of Aloe vera in the transport water of matrinxã (Brycon amazonicus) fish on stress response and leukocyte respiratory activity. Fish was transported for 4 h in water containing Aloe at levels 0; 0.02; 0.2 and 2 mg/L, and sampled before transport 2, 4, 24 and 96 h after for determination of plasma glucose and respiratory activity of leukocytes. An additional in vitro assay was conducted with another fish species, pacu (Piaractus mesopotamicus), to test the respiratory burst of leukocytes exposed to Aloe extract (0.0, phosphate-buffered saline (PBS) only) at 0.1, 0.2, 0.5 and 1 mg/L). Plasma glucose increased after 2 and 4 h of transport and returned to control levels within 24 h, but the addition of Aloe in the transport water did not affect the level of blood glucose. However, at 2 h of transport, Aloe enhanced the respiratory activity of leukocytes in a dose-dependent way. The highest value of respiratory burst activity of leukocytes was observed in the fish transported in water containing Aloe at 2 mg/L. The enhancing effect of the plant extract on the production of oxygen radicals was confirmed in vitro in leukocytes of pacu incubated in Aloe at concentrations 0.1 and 0.2 mg/L. The results suggest that Aloe vera is a modulator of the immune system in fish improving the innate immune response tested.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study evaluated stress indicators of juvenile piau (Leporinus friderici) during and after a 4-hour transportation in order to establish an appropriate transportation protocol for this type of fish. Fish were transported in plastic bags (133.1 g/L) and sampled before loading, during 1, 2, 3 and 4 h and after transportation (2, 6, 12 and 24 h). Blood samples were analyzed for cortisol and glucose levels, hematocrit, hemoglobin level, number and mean corpuscular volume of erythrocytes. Water pH, dissolved oxygen, temperature and ammonia were monitored before, during and after transportation. No mortality was observed through the experiment. Ammonia levels increased throughout transportation, but the low pH values kept NH3 in safe levels for fish. Cortisol levels increased within 4 h of transportation, and returned to control condition 2 h after arrival. Plasma glucose increased within one hour of transportation, reaching peak value within 4 h and returning to initial condition 2 h after arrival. Erythrocyte number and hemoglobin levels showed the lowest levels 2 h after arrival, and mean corpuscular volume increased during transportation, decreasing at 12 and 24 h after arrival. Transporting piau is stressful, but fish recover the initial condition in short time, showing tolerance to the changes in the water quality parameters.
Resumo:
The reference intervals for biochemical variables and red blood cell indices of healthy intensively bred channel catfish Ictalurus punctatus were determined. The blood variables were determined using standardized clinical methods. The reference intervals (25th and 75th percentiles) were established using a non-parametric method. Reference intervals for plasma glucose, serum total protein, sodium, potassium, calcium, magnesium, chloride concentration, primary and secondary red blood cell indices were established. The haematological and biochemical reference intervals established may allow important clinical decisions about channel catfish. (c) 2007 the Authors Journal compilation (C) 2007 the Fisheries Society of the British Isles.
Resumo:
Leporinus macrocephalus is a non-migratory omnivore fish which occurs in waters with a relatively high oxygen rate. Prochilodus lineatus is a migratory fish that inhabits deoxygenated hypolimnion and feeds on detritus material. Red blood cell, thrombocytes and white blood cell counts, hematocrit and hemoglobin, serum electrolytes (sodium, potassium, calcium, magnesium and chloride), metabolic products (total serum protein and plasma glucose) and blood cells major axis length for L. macrocephalus and P. lineatus were compared. White blood cell counts for both species indicated a similar activity of the immune functions. The concentration of total protein, sodium, calcium, magnesium and chloride, MCV, as well as red blood cells, monocytes, and thrombocytes size in L. macrocephalus were higher than in P. lineatus. However, P. lineatus had higher red blood cell counts, hematocrit and hemoglobin, which reflects a considerable adaptation to survive in an environment with low levels of oxygen.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)