903 resultados para Planning of movement
Resumo:
Femoroacetabular impingement (FAI) is a dynamic conflict of the hip defined by a pathological, early abutment of the proximal femur onto the acetabulum or pelvis. In the past two decades, FAI has received increasing focus in both research and clinical practice as a cause of hip pain and prearthrotic deformity. Anatomical abnormalities such as an aspherical femoral head (cam-type FAI), a focal or general overgrowth of the acetabulum (pincer-type FAI), a high riding greater or lesser trochanter (extra-articular FAI), or abnormal torsion of the femur have been identified as underlying pathomorphologies. Open and arthroscopic treatment options are available to correct the deformity and to allow impingement-free range of motion. In routine practice, diagnosis and treatment planning of FAI is based on clinical examination and conventional imaging modalities such as standard radiography, magnetic resonance arthrography (MRA), and computed tomography (CT). Modern software tools allow three-dimensional analysis of the hip joint by extracting pelvic landmarks from two-dimensional antero-posterior pelvic radiographs. An object-oriented cross-platform program (Hip2Norm) has been developed and validated to standardize pelvic rotation and tilt on conventional AP pelvis radiographs. It has been shown that Hip2Norm is an accurate, consistent, reliable and reproducible tool for the correction of selected hip parameters on conventional radiographs. In contrast to conventional imaging modalities, which provide only static visualization, novel computer assisted tools have been developed to allow the dynamic analysis of FAI pathomechanics. In this context, a validated, CT-based software package (HipMotion) has been introduced. HipMotion is based on polygonal three-dimensional models of the patient’s pelvis and femur. The software includes simulation methods for range of motion, collision detection and accurate mapping of impingement areas. A preoperative treatment plan can be created by performing a virtual resection of any mapped impingement zones both on the femoral head-neck junction, as well as the acetabular rim using the same three-dimensional models. The following book chapter provides a summarized description of current computer-assisted tools for the diagnosis and treatment planning of FAI highlighting the possibility for both static and dynamic evaluation, reliability and reproducibility, and its applicability to routine clinical use.
Resumo:
Primary motor cortex (M1) is involved in the production of voluntary movement and contains a complete functional representation, or map, of the skeletal musculature. This functional map can be altered by pathological experiences, such as peripheral nerve injury or stroke, by pharmacological manipulation, and by behavioral experience. The process by which experience-dependent alterations of cortical function occur is termed plasticity. In this thesis, plasticity of M1 functional organization as a consequence of behavioral experience was examined in adult primates (squirrel monkeys). Maps of movement representations were derived under anesthesia using intracortical microstimulation, whereby a microelectrode was inserted into the cortex to electrically stimulate corticospinal neurons at low current levels and evoke movements of the forelimb, principally of the hand. Movement representations were examined before and at several times after training on behavioral tasks that emphasized use of the fingers. Two behavioral tasks were utilized that dissociated the repetition of motor activity from the acquisition of motor skills. One task was easy to perform, and as such promoted repetitive motor activity without learning. The other task was more difficult, requiring the acquisition of motor skills for successful performance. Kinematic analysis indicated that monkeys used a consistent set of forelimb movements during pellet extractions. Functional mapping revealed that repetitive motor activity during the easier task did not produce plastic changes in movement representations. Instead, map plasticity, in the form of selective expansions of task-related movement representations, was only produced following skill acquisition on the difficult task. Additional studies revealed that, in general, map plasticity persisted without further training for up to three months, in parallel with the retention of task-related motor skills. Also, extensive additional training on the small well task produced further improvements in performance, and further changes in movement maps. In sum, these experiments support the following three conclusions regarding the role of M1 in motor learning. First, behaviorally-driven plasticity is learning-dependent, not activity-dependent. Second, plastic changes in M1 functional representations represent a neural correlate of acquired motor skills. Third, the persistence of map plasticity suggests that M1 is part of the neural substrate for the memory of motor skills. ^
Resumo:
This paper addresses the historical evolution of, from its inception, to the present day, within the changing context of EHEA and linked to professional competences. The research methodology, although it is mainly a historical document review, expert opinions on university educational planning of university education of forestry engineering in Spain are also included. The results show the evolution of centralized planning, based on technical knowledge transmission to an approach based on competences (technical, contextual and behavioral) focusing on learning for improving employability.
Resumo:
Tese de mestrado integrado em Engenharia Biomédica e Biofísica, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2016