444 resultados para Pipelines


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"PB2005-917005."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existing method of pipeline health monitoring, which requires an entire pipeline to be inspected periodically, is unproductive. A risk-based decision support system (DSS) that reduces the amount of time spent on inspection has been presented. The risk-based DSS uses the analytic hierarchy process (AHP), a multiple attribute decision-making technique, to identify the factors that influence failure on specific segments and analyzes their effects by determining probability of occurrence of these risk factors. The severity of failure is determined through consequence analysis. From this, the effect of a failure caused by each risk factor can be established in terms of cost and the cumulative effect of failure is determined through probability analysis. The model optimizes the cost of pipeline operations by reducing subjectivity in selecting a specific inspection method, identifying and prioritizing the right pipeline segment for inspection and maintenance, deriving budget allocation, providing guidance to deploy the right mix labor for inspection and maintenance, planning emergency preparation, and deriving logical insurance plan. The proposed methodology also helps derive inspection and maintenance policy for the entire pipeline system, suggest design, operational philosophy, and construction methodology for new pipelines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Offshore oil and gas pipelines are vulnerable to environment as any leak and burst in pipelines cause oil/gas spill resulting in huge negative Impacts on marine lives. Breakdown maintenance of these pipelines is also cost-intensive and time-consuming resulting in huge tangible and intangible loss to the pipeline operators. Pipelines health monitoring and integrity analysis have been researched a lot for successful pipeline operations and risk-based maintenance model is one of the outcomes of those researches. This study develops a risk-based maintenance model using a combined multiple-criteria decision-making and weight method for offshore oil and gas pipelines in Thailand with the active participation of experienced executives. The model's effectiveness has been demonstrated through real life application on oil and gas pipelines in the Gulf of Thailand. Practical implications. Risk-based inspection and maintenance methodology is particularly important for oil pipelines system, as any failure in the system will not only affect productivity negatively but also has tremendous negative environmental impact. The proposed model helps the pipelines operators to analyze the health of pipelines dynamically, to select specific inspection and maintenance method for specific section in line with its probability and severity of failure.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Operating oil pipelines in an optimum capacity through out its life, effective construction management and failure free operations are considered as critical success factors in oil transportation business. Operating oil pipelines in derated capacity due to deteriorating pipeline health or lack of demand, non-ability of augmenting pipeline capacity despite of demand, non-achievement of time, cost, and quality of pipeline construction projects, and many failures of pipelines despite of huge expenditure in inspection and maintenance are the common phenomena in oil pipelines industry. These not only cause business loss, but also increase stakeholders' concerns for sustainable development. This study addresses the above issues using an analytical framework through stakeholders' involvement. Copyright © 2006 Inderscience Enterprises Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existing method of pipeline health monitoring, which requires an entire pipeline to be inspected periodically, is both time-wasting and expensive. A risk-based model that reduces the amount of time spent on inspection has been presented. This model not only reduces the cost of maintaining petroleum pipelines, but also suggests an efficient design and operation philosophy, construction methodology, and logical insurance plans. The risk-based model uses the analytic hierarchy process (AHP), a multiple-attribute decision-making technique, to identify the factors that influence failure on specific segments and to analyze their effects by determining probability of risk factors. The severity of failure is determined through consequence analysis. From this, the effect of a failure caused by each risk factor can be established in terms of cost, and the cumulative effect of failure is determined through probability analysis. The technique does not totally eliminate subjectivity, but it is an improvement over the existing inspection method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cross-country petroleum pipelines are environmentally sensitive because they traverse through varied terrain covering crop fields, forests, rivers, populated areas, desert, hills and offshore. Any malfunction of these pipelines may cause devastating effect on the environment. Hence, the pipeline operators plan and design pipelines projects with sufficient consideration of environment and social aspects along with the technological alternatives. Traditionally, in project appraisal, optimum technical alternative is selected using financial analysis. Impact assessments (IA) are then carried out to justify the selection and subsequent statutory approval. However, the IAs often suggest alternative sites and/or alternate technology and implementation methodology, resulting in revision of entire technical and financial analysis. This study addresses the above issues by developing an integrated framework for project feasibility analysis with the application of analytic hierarchy process (AHP), a multiple attribute decision-making technique. The model considers technical analysis (TA), socioeconomic IA (SEIA) and environmental IA (EIA) in an integrated framework to select the best project from a few alternative feasible projects. Subsequent financial analysis then justifies the selection. The entire methodology has been explained here through a case application on cross-country petroleum pipeline project in India.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In oil and gas pipeline operations, the gas, oil, and water phases simultaneously move through pipe systems. The mixture cools as it flows through subsea pipelines, and forms a hydrate formation region, where the hydrate crystals start to grow and may eventually block the pipeline. The potential of pipe blockage due to hydrate formation is one of the most significant flow-assurance problems in deep-water subsea operations. Due to the catastrophic safety and economic implications of hydrate blockage, it is important to accurately predict the simultaneous flow of gas, water, and hydrate particles in flowlines. Currently, there are few or no studies that account for the simultaneous effects of hydrate growth and heat transfer on flow characteristics within pipelines. This thesis presents new and more accurate predictive models of multiphase flows in undersea pipelines to describe the simultaneous flow of gas, water, and hydrate particles through a pipeline. A growth rate model for the hydrate phase is presented and then used in the development of a new three-phase model. The conservation equations of mass, momentum, and energy are formulated to describe the physical phenomena of momentum and heat transfer between the fluid and the wall. The governing equations are solved based on an analytical-numerical approach using a Newton-Raphson method for the nonlinear equations. An algorithm was developed in Matlab software to solve the equations from the inlet to the outlet of the pipeline. The developed models are validated against a single-phase model with mixture properties, and the results of comparative studies show close agreement. The new model predicts the volume fraction and velocity of each phase, as well as the mixture pressure and temperature profiles along the length of the pipeline. The results from the hydrate growth model reveal the growth rate and location where the initial hydrates start to form. Finally, to assess the impact of certain parameters on the flow characteristics, parametric studies have been conducted. The results show the effect of a variation in the pipe diameter, mass flow rate, inlet pressure, and inlet temperature on the flow characteristics and hydrate growth rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analyzing large-scale gene expression data is a labor-intensive and time-consuming process. To make data analysis easier, we developed a set of pipelines for rapid processing and analysis poplar gene expression data for knowledge discovery. Of all pipelines developed, differentially expressed genes (DEGs) pipeline is the one designed to identify biologically important genes that are differentially expressed in one of multiple time points for conditions. Pathway analysis pipeline was designed to identify the differentially expression metabolic pathways. Protein domain enrichment pipeline can identify the enriched protein domains present in the DEGs. Finally, Gene Ontology (GO) enrichment analysis pipeline was developed to identify the enriched GO terms in the DEGs. Our pipeline tools can analyze both microarray gene data and high-throughput gene data. These two types of data are obtained by two different technologies. A microarray technology is to measure gene expression levels via microarray chips, a collection of microscopic DNA spots attached to a solid (glass) surface, whereas high throughput sequencing, also called as the next-generation sequencing, is a new technology to measure gene expression levels by directly sequencing mRNAs, and obtaining each mRNA’s copy numbers in cells or tissues. We also developed a web portal (http://sys.bio.mtu.edu/) to make all pipelines available to public to facilitate users to analyze their gene expression data. In addition to the analyses mentioned above, it can also perform GO hierarchy analysis, i.e. construct GO trees using a list of GO terms as an input.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OpenLab ESEV is a project of the School of Education of the Polytechnic Institute of Viseu (ESEV), Portugal, that aims to promote, foster and support the use of Free/Libre Software and Open Source Software, Open Educational Resources, Free Culture, Free file formats and more flexible copyright licenses for creative and educational purposes in the ESEV's domains of activity (education, arts, media). Most of the OpenLab ESEV activities are related to the teacher education and arts and multimedia programs, with a special focus on the later. In this paper, the project and some activities are presented, starting with its origins and its conceptual framework. The presented overview is intended as background for the examination of the use of Free/Libre Software and Free Culture in educational settings, specially at the higher education level, and for creative purposes. The activities developed with students and professionals generated pipelines and workflows implemented for different creative purposes, software packages used for different tasks, choices for file formats and copyright licenses. Finished and ongoing multimedia and arts projects will be presented as real case scenarios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pipelines play an important role in the modern society. Failures of pipelines can have great impacts on economy, environment and community. Preventive maintenance (PM) is often conducted to improve the reliability of pipelines. Modern asset management practice requires accurate predictability of the reliability of pipelines with multiple PM actions, especially when these PM actions involve imperfect repairs. To address this issue, a split system approach (SSA) based model is developed in this paper through an industrial case study. This new model enables maintenance personnel to predict the reliability of pipelines with different PM strategies and hence effectively assists them in making optimal PM decisions.