972 resultados para Physiology of Green mussel Perna Viridis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strongly reducing organic substances (SROS) and iron oxides exist widely in soils and sediments and have been implicated in many soil and sediment processes. In the present work, the sorptive interaction between goethite and SROS derived from anaerobic decomposition of green manures was investigated by differential pulse voltammetry (DPV). Both green manures, Astragaltus sinicus (Astragalus) and Vicia varia (Vicia) were chosen to be anaerobically decomposed by the mixed microorganisms isolated from paddy soils for 30 d to prepare different SROS. Goethite used in experiments was synthesized in laboratory. The anaerobic incubation solutions from green manures at different incubation time were arranged to react with goethite, in which SROS concentration and Fe(II) species were analyzed. The anaerobic decomposition of Astragalus generally produced SROS more in amount but weaker in reducibility than that of Vicia in the same incubation time. The available SROS from Astragalus that could interact with goethite was 0.69 +/- 0.04, 0.84 +/- 0.04 and 1.09 +/- 0.03 cmol kg(-1) as incubated for 10, 15 and 30 d, respectively, for Vicia, it was 0.12 +/- 0.03, 0.46 +/- 0.02 and 0.70 +/- 0.02 cmol kg(-1). One of the fates of SROS as they interacted with goethite was oxidation. The amounts of oxidizable SROS from Astragalus decreased over increasing incubation time from 0.51 +/- 0.05 cmol kg(-1) at day 10 to 0.39 +/- 0.04 cmol kg(-1) at day 30, but for Vicia, it increased with the highest reaching to 0.58 +/- 0.04 cmol kg(-1) at day 30. Another fate of these substances was sorption by goethite. The SROS from Astragalus were sorbed more readily than those from Vicia, and closely depended upon the incubation time, whereas for those from Vicia, the corresponding values were remarkably less and apparently unchangeable with incubation time. The extent of goethite dissolution induced by the anaerobic solution from Vicia was greater than that from Astragalus, showing its higher reactivity. (c) 2008 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amplified spontaneous emission (ASE) characteristics of a red fluorescent dye, 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB), and a green fluorescent dye, (10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1] benzopyrano [6,7,8-ij]quinohzin-11-one) (C545T) codoped polystyrene (PS) as the active medium were studied. It was found that the performance of ASE is greatly improved due to the introduction of C545T. By optimizing the concentrations of C545T and DCJTB in PS, an ASE threshold of 0.016 mJ pulse(-1), net gain of 52.71 cm(-1), and loss of 11.7 cm(-1) were obtained. The efficient Forster energy transfer from C545T to DCJTB was used to explain the improvement of the ASE performance in the coguest system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main light-harvesting chlorophyll a/b -protein complex (LHC II) has been isolated directly from thylakoid membranes of shiphonous green alga, Bryopsis corticulans Setch. by using two consecutive runs of anion exchange and gel-filtration chromatography. Monomeric and trimeric subcomplexes of LHC 11 were obtained by using sucrose gradient ultracentrifugation. Pigment analysis by reversed-phase high performance liquid chromatography showed that chlorophyll a (Chl a), chlorophyll b (Chl b), neoxanthin, violaxanthin and siphonaxanthin were involved in LHC 11 from B. corticulans. The properties of electronic transition of monomeric LHC II showed similarities to those of trimeric LHC II. Circular dichroism spectroscopy showed that strong intramolecular interaction of excitonic dipoles between Chl a and between Chl b exist in one LHC II apoprotein, while the intermolecular interaction of these dipoles can be intensified in the trimeric structure. The monomer has high efficient energy transfer from Chl b and siphonaxanthin to Chl a similarly to that of the trimer. Our results suggest that in B. corticulans, LHC II monomer has high ordered pigment organization that play effective physiological function as the trimer, and thus it might be also a functional organization existing in thylakoid membrane of B. corticulans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The free living conchocelis of Porphyra yezoensis Ueda was treated with N-methyl-N-nitro-N-nitrosoguanidine to induce pigmentation mutants. The artificial green pigmentation mutant of P. yezoensis conchocelis, which was composed entirely of green cells, was isolated through visualization with the unaided eye. The acquired green conchocelis was further developed into a green gametophytic blade. This mutant was relatively stable in color in both gametophytic blade and conchocelis phases. The gametophytic blade mutant was successively cultivated for commerce at some Porphyra farms in Rudong, China, and few wild type or sectorially variegated gametophytic blade occurred, indicating that the green mutant has commercial value. The green mutant was characterized as having lower phycoerythrin and higher phycocyanin content, and SDS-PAGE suggested that phycoerythrin was missing the gamma-subunit in comparison to the wild type. The wild type and the green mutant showed a clear difference in 02 evolution rates in white, green, yellow, and red light, which might be due to the qualitative and quantitative changes of phycoerythrin, and the quantitative difference of phycocyanin. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Binocular rivalry refers to the alternating perceptions experienced when two dissimilar patterns are stereoscopically viewed. To study the neural mechanism that underlies such competitive interactions, single cells were recorded in the visual areas V1, V2, and V4, while monkeys reported the perceived orientation of rivaling sinusoidal grating patterns. A number of neurons in all areas showed alternating periods of excitation and inhibition that correlated with the perceptual dominance and suppression of the cell"s preferred orientation. The remaining population of cells were not influenced by whether or not the optimal stimulus orientation was perceptually suppressed. Response modulation during rivalry was not correlated with cell attributes such as monocularity, binocularity, or disparity tuning. These results suggest that the awareness of a visual pattern during binocular rivalry arises through interactions between neurons at different levels of visual pathways, and that the site of suppression is unlikely to correspond to a particular visual area, as often hypothesized on the basis of psychophysical observations. The cell-types of modulating neurons and their overwhelming preponderance in higher rather than in early visual areas also suggests -- together with earlier psychophysical evidence -- the possibility of a common mechanism underlying rivalry as well as other bistable percepts, such as those experienced with ambiguous figures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coral reefs are facing major global and local threats due to climate change-induced increases in dissolved inorganic carbon (DIC) and because of land-derived increases in organic and inorganic nutrients. Recent research revealed that high availability of labile dissolved organic carbon (DOC) negatively affects scleractinian corals. Studies on the interplay of these factors, however, are lacking, but urgently needed to understand coral reef functioning under present and near future conditions. This experimental study investigated the individual and combined effects of ambient and high DIC (pCO2 403 μatm/ pHTotal 8.2 and 996 μatm/pHTotal 7.8) and DOC (added as Glucose 0 and 294 μmol L-1, background DOC concentration of 83 μmol L-1) availability on the physiology (net and gross photosynthesis, respiration, dark and light calcification, and growth) of the scleractinian coral Acropora millepora (Ehrenberg, 1834) from the Great Barrier Reef over a 16 day interval. High DIC availability did not affect photosynthesis, respiration and light calcification, but significantly reduced dark calcification and growth by 50 and 23%, respectively. High DOC availability reduced net and gross photosynthesis by 51% and 39%, respectively, but did not affect respiration. DOC addition did not influence calcification, but significantly increased growth by 42%. Combination of high DIC and high DOC availability did not affect photosynthesis, light calcification, respiration or growth, but significantly decreased dark calcification when compared to both controls and DIC treatments. On the ecosystem level, high DIC concentrations may lead to reduced accretion and growth of reefs dominated by Acropora that under elevated DOC concentrations will likely exhibit reduced primary production rates, ultimately leading to loss of hard substrate and reef erosion. It is therefore important to consider the potential impacts of elevated DOC and DIC simultaneously to assess real world scenarios, as multiple rather than single factors influence key physiological processes in coral reefs.