947 resultados para Physical and chemical variables
Resumo:
Tree hollows are keystone structures for saproxylic fauna and host numerous endangered species. However, not all tree hollows are equal. Many variables including physical, biotic and chemical ones, can characterise a tree hollow, however, the information that these could provide about the saproxylic diversity they harbour has been poorly explored. We studied the beetle assemblages of 111 Quercus species tree hollows in four protected areas of the Iberian Peninsula. Three physical variables related to tree hollow structure, and two biotic ones (presence of Cetoniidae and Cerambyx species recognised as ecosystem engineers) were measured in each hollow to explore their relative effect on beetle assemblages. Moreover, we analysed the chemical composition of the wood mould in 34 of the hollows, in order to relate beetle diversity with hollow quality. All the environmental variables analysed (physical and biological) showed a significant influence on saproxylic beetle assemblages that varied depending on the species. Furthermore, the presence of ecosystem engineers affected both physical and chemical features. Although wood mould volume, and both biotic variables could act as beetle diversity surrogate, we enhance the presence of Cetoniidae and Cerambyx activity (both easily observable in the field) as indicator variables, even more if both co-occur as each affect to different assemblages. Finally, assimilable carbon and phosphorous contents could act as indicator for past and present beetle activity inside the cavity that could become a useful tool in functional diversity studies. However, an extension of this work to other taxonomic groups would be desirable.
Resumo:
ABSTRACT The objective of this study was to evaluate the chemical and physical attributes of different soil cover in a Oxisol with a strong wavy relief in the Atlantic Forest Biome, in which were selected three watersheds, employed with grazing (watershed P), forest (watershed M) and coffee (watershed C). Deformed and not deformed samples were collected in three depths for physical and chemical characterization. The chemical characteristics of soil in different watershed studies presented low levels of fertility. It was observed an elevation of pH in the soil and contents of Ca2+ and Mg2+ in the watersheds P and C in relation to the watershed M. Due to deforestation and the establishment of agriculture and livestock, there was a decrease in the contents of soil organic matter in the watershed P and C, not altering the physical characteristics of the soil in the watershed P. The implementation of coffee plantation is causing a reduction in the soil quality of watershed C in comparison to the watershed P and M, therefore indicating a need to adequate soil management in this area.
Resumo:
Dinoflagellates of the genus Ceratium are chiefly marine but there are rare occurrences in freshwater. In this study we analyze the invasion and progressive establishment of Ceratium furcoides, an exotic species, in the Furnas Reservoir. Samples were taken at 36 points in the reservoir, during the months of March, June, September and December, 2007. Measurements of some physical and chemical variables were simultaneously performed at each site. The occurrence of C. furcoides was registered at 20 sites, with densities varying between 0.57 and 28,564,913.0 ind.m(-3). Blooms of this species were recorded in points which were classified as mesotrophic, coinciding with the places receiving high amounts of untreated domestic sewage. C. furcoides density was correlated with temperature, nutrients (nitrate and nitrite) and water electric conductivity. The highest density was recorded in June when temperature was low. The presence of Ceratium furcoides in the reservoir apparently has not yet affected the reservoir water quality or other plankton communities. However, if it becomes fully established it could perhaps become a problem in the reservoir or even to spread out to other reservoirs in Rio Grande basin.
Resumo:
Dinoflagellates of the genus Ceratium are chiefly marine but there are rare occurrences in freshwater. In this study we analyze the invasion and progressive establishment of Ceratium furcoides, an exotic species, in the Furnas Reservoir. Samples were taken at 36 points in the reservoir, during the months of March, June, September and December, 2007. Measurements of some physical and chemical variables were simultaneously performed at each site. The occurrence of C. furcoides was registered at 20 sites, with densities varying between 0.57 and 28,564,913.0 ind.m-3. Blooms of this species were recorded in points which were classified as mesotrophic, coinciding with the places receiving high amounts of untreated domestic sewage. C. furcoides density was correlated with temperature, nutrients (nitrate and nitrite) and water electric conductivity. The highest density was recorded in June when temperature was low. The presence of Ceratium furcoides in the reservoir apparently has not yet affected the reservoir water quality or other plankton communities. However, if it becomes fully established it could perhaps become a problem in the reservoir or even to spread out to other reservoirs in Rio Grande basin.
Resumo:
ABSTRACT Based on the hypothesis that diel vertical migration (DVM) is a mechanism of predator avoidance, the objective of the present study was to test for the occurrence of DVM in planktivorous fish larvae of Hypophthalmus edentatus (Spix, 1829) (Siluriformes, Pimelodidae) and Plagioscion squamosissimus (Heckel, 1840) (Perciformes, Sciaenidae), and zooplankton (rotifers, cladocerans and copepods) in an isolated tropical lagoon in the floodplain of the Upper Paraná River, Brazil (region of Parque Nacional de Ilha Grande). We investigated spatial overlap between predators (planktivorous fish larvae) and prey (zooplankton), and tested which physical and chemical variables of the water are related to the DVM of the studied communities. We performed nocturnal (8:00 pm and 4:00 am) and diurnal sampling (8:00 am and 4:00 pm) in the limnetic region of the lagoon for six consecutive months, from October 2010 to March 2011, which comprises the reproductive period of the fish species analyzed. During the day the larvae tried to remain aggregated in the bottom of the lagoon, whereas at night they tried to disperse in the water column. Especially for cladocerans, the diel vertical migration is an important behavior to avoid predation larvae of H. edentatus and P. squamosissimus once decreased spatial overlap between secured and its potential predators, which corroborates the hypothesis that DVM is a mechanism of predator avoidance. Although significant correlations were observed between the abiotic factors and WMD of microcrustaceans at certain times of day, the effect of predation of fish larvae on zooplankton showed more important in this environment, because the small depth and isolation not allow great variation of abiotic factors seasonally and between strata the lagoon.
Resumo:
The objective of this experiment was to study the effects of soil management systems on the bulk density, chemical soil properties, and on the soil microbial activity on a Latossolo Vermelho distrófico (Oxisol). Soil samples were collected from plots under the following management conditions: a) natural dense "cerrado" vegetation (savanna); b) degraded Brachiaria decumbens pasture, 20 years old; c) no-tillage treatment with annual crop sequence (bean, corn, soybean and dark-oat in continuous rotation), 8 years old; d) conventional tillage treatment with crop residues added to the soil, and annual crop sequence, 10 years old. The continuous use of no-tillage system resulted in an increase in microbial biomass and decrease in soil basal respiration, therefore displaying evident long-term effects on the increase of soil C content. The no-tillage system also provided an improvement in bulk density and chemical properties of the soil. Hence, the no-tillage management system could be an alternative for the conservation and maintenance of physical and chemical conditions and the productive potential of "cerrado" soils.
Resumo:
The aim of this study was to investigate the effect of combined pressure/temperature treatments (200, 400 and 600 MPa, at 20 and 40 °C) on key physical and chemical characteristics of white cabbage (Brassica oleracea L. var. capitata alba). Thermal treatment (blanching) was also investigated and compared with high-pressure processing (HPP). HPP at 400 MPa and 20–40 °C caused significantly larger colour changes compared to any other pressure or thermal treatment. All pressure treatments induced a softening effect, whereas blanching did not significantly alter texture. Both blanching and pressure treatments resulted in a reduction in the levels of ascorbic acid, effect that was less pronounced for blanching and HPP at 600 MPa and 20–40 °C. HPP at 600 MPa resulted in significantly higher total phenol content, total antioxidant capacity and total isothiocyanate content compared to blanching. In summary, the colour and texture of white cabbage were better preserved by blanching. However, HPP at 600 MPa resulted in significantly higher levels of phytochemical compounds. The results of this study suggest that HPP may represent an attractive technology to process vegetable-based food products that better maintains important aspects related to the content of health-promoting compounds. This may be of particular relevance to the food industry sector involved in the development of convenient novel food products with excellent functional properties
Resumo:
Brazil has high climate, soil and environmental diversity, as well as distinct socioeconomic and political realities, what results in differences among the political administrative regions of the country. The objective of this study was to determine spatial distribution of the physical, climatic and socioeconomic aspects that best characterize the production of dairy goats in Brazil. Production indices of milk per goat, goat production, milk production, as well as temperature range, mean temperature, precipitation, normalized difference vegetation index, relative humidity, altitude, agricultural farms; farms with native pasture, farms with good quality pasture, farms with water resources, farms that receive technical guidance, family farming properties, non-familiar farms and the human development index were evaluated. The multivariate analyses were carried out to spatialize climatic, physical and socioeconomic variables and so differenciate the Brazilian States and Regions. The highest yields of milk and goat production were observed in the Northeast. The Southeast Region had the second highest production of milk, followed by the South, Midwest and North. Multivariate analysis revealed distinctions between clusters of political-administrative regions of Brazil. The climatic variables were most important to discriminate between regions of Brazil. Therefore, it is necessary to implement animal breeding programs to meet the needs of each region.
Resumo:
Este trabalho teve por objetivo estudar os efeitos de diferentes sistemas de uso e manejo na densidade do solo nas suas propriedades químicas e na atividade microbiana em um Latossolo Vermelho distrófico (Oxisol). As amostras de solo foram retiradas de parcelas dos seguintes tratamentos: cerrado denso preservado, pastagem de Brachiaria decumbens degradada (20 anos), plantio direto com rotação de culturas (8 anos) e sistema convencional com rotação de culturas anuais (10 anos). O delineamento experimental utilizado foi o inteiramente casualizado, com dez repetições. O uso contínuo de plantio direto resultou em mais alta taxa de C-biomassa microbiana e menor perda relativa de carbono pela respiração basal, podendo determinar, desta forma, maior acúmulo de C no solo a longo prazo. Proporcionou, ainda, melhoria na densidade aparente e nas propriedades químicas do solo. Assim, o sistema plantio direto, com manejo de culturas, mostrou ser uma alternativa para a conservação e manutenção das condições físicas e do potencial produtivo de solos de cerrado.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study aims to inventory and assess the aquatic macroinvertebrates fauna in two artificial reservoirs into conservation units with differences regarding conservation level and to anthropogenic impacts. The samplings were carried out in Caetetus Ecological Station and Bauru City Zoological Park, where some physical and chemical variables also were measured. The results obtained indicated that the Caetetus Ecological Station is more effective in the conservation of the diversity of aquatic macroinvertebrates compared to Bauru City Zoological Park. These results can be attributed to the strong anthropogenic impact suffered by the reservoir in Bauru and demonstrate the importance of these areas in maintaining the diversity of aquatic macroinvertebrates community.
Resumo:
AIM: The main goal of this research was to investigate the influence of the hydrological pulses on the space-temporal dynamics of physical and chemical variables in a wetland adjacent to Jacupiranguinha River (São Paulo, Brazil); METHODS: Eleven sampling points were distributed among the wetland, a tributary by its left side and the adjacent river. Four samplings were carried out, covering the rainy and the dry periods. Measures of pH, dissolved oxygen, electrical conductivity and redox potential were taken in regular intervals of the water column using a multiparametric probe. Water samples were collected for the nitrogen and total phosphorus analysis, as well as their dissolved fractions (dissolved inorganic phosphorus, total dissolved phosphorus, ammoniacal nitrogen and nitrate). Total alkalinity and suspended solids were also quantified; RESULTS: The Multivariate Analysis of Variance showed the influence of the seasonality on the variability of the investigated variables, while the Principal Component Analysis gave rise in two statistical significant axes, which delimited two groups representative of the rainy and dry periods. Hydrological pulses from Jacupiranguinha River, besides contributing to the inputs of nutrients and sediments during the period of connectivity, accounted for the decrease in spatial gradients in the wetland. This "homogenization effect" was evidenced by the Cluster Analysis. The research also showed an industrial raw effluent as the main point source of phosphorus to the Jacupiranguinha River and, indirectly, to the wetland; CONCLUSIONS: Therefore, considering the scarcity of information about the wetlands in the study area, this research, besides contributing to the understanding of the influence of hydrological pulses on the investigated environmental variables, showed the need for adoption of conservation policies of these ecosystems face the increase anthropic pressures that they have been submitted, which may result in lack of their ecological, social and economic functions.
Resumo:
Aerosolpartikel beeinflussen das Klima durch Streuung und Absorption von Strahlung sowie als Nukleations-Kerne für Wolkentröpfchen und Eiskristalle. Darüber hinaus haben Aerosole einen starken Einfluss auf die Luftverschmutzung und die öffentliche Gesundheit. Gas-Partikel-Wechselwirkunge sind wichtige Prozesse, weil sie die physikalischen und chemischen Eigenschaften von Aerosolen wie Toxizität, Reaktivität, Hygroskopizität und optische Eigenschaften beeinflussen. Durch einen Mangel an experimentellen Daten und universellen Modellformalismen sind jedoch die Mechanismen und die Kinetik der Gasaufnahme und der chemischen Transformation organischer Aerosolpartikel unzureichend erfasst. Sowohl die chemische Transformation als auch die negativen gesundheitlichen Auswirkungen von toxischen und allergenen Aerosolpartikeln, wie Ruß, polyzyklische aromatische Kohlenwasserstoffe (PAK) und Proteine, sind bislang nicht gut verstanden.rn Kinetische Fluss-Modelle für Aerosoloberflächen- und Partikelbulk-Chemie wurden auf Basis des Pöschl-Rudich-Ammann-Formalismus für Gas-Partikel-Wechselwirkungen entwickelt. Zunächst wurde das kinetische Doppelschicht-Oberflächenmodell K2-SURF entwickelt, welches den Abbau von PAK auf Aerosolpartikeln in Gegenwart von Ozon, Stickstoffdioxid, Wasserdampf, Hydroxyl- und Nitrat-Radikalen beschreibt. Kompetitive Adsorption und chemische Transformation der Oberfläche führen zu einer stark nicht-linearen Abhängigkeit der Ozon-Aufnahme bezüglich Gaszusammensetzung. Unter atmosphärischen Bedingungen reicht die chemische Lebensdauer von PAK von wenigen Minuten auf Ruß, über mehrere Stunden auf organischen und anorganischen Feststoffen bis hin zu Tagen auf flüssigen Partikeln. rn Anschließend wurde das kinetische Mehrschichtenmodell KM-SUB entwickelt um die chemische Transformation organischer Aerosolpartikel zu beschreiben. KM-SUB ist in der Lage, Transportprozesse und chemische Reaktionen an der Oberfläche und im Bulk von Aerosol-partikeln explizit aufzulösen. Es erforder im Gegensatz zu früheren Modellen keine vereinfachenden Annahmen über stationäre Zustände und radiale Durchmischung. In Kombination mit Literaturdaten und neuen experimentellen Ergebnissen wurde KM-SUB eingesetzt, um die Effekte von Grenzflächen- und Bulk-Transportprozessen auf die Ozonolyse und Nitrierung von Protein-Makromolekülen, Ölsäure, und verwandten organischen Ver¬bin-dungen aufzuklären. Die in dieser Studie entwickelten kinetischen Modelle sollen als Basis für die Entwicklung eines detaillierten Mechanismus für Aerosolchemie dienen sowie für das Herleiten von vereinfachten, jedoch realistischen Parametrisierungen für großskalige globale Atmosphären- und Klima-Modelle. rn Die in dieser Studie durchgeführten Experimente und Modellrechnungen liefern Beweise für die Bildung langlebiger reaktiver Sauerstoff-Intermediate (ROI) in der heterogenen Reaktion von Ozon mit Aerosolpartikeln. Die chemische Lebensdauer dieser Zwischenformen beträgt mehr als 100 s, deutlich länger als die Oberflächen-Verweilzeit von molekularem O3 (~10-9 s). Die ROIs erklären scheinbare Diskrepanzen zwischen früheren quantenmechanischen Berechnungen und kinetischen Experimenten. Sie spielen eine Schlüsselrolle in der chemischen Transformation sowie in den negativen Gesundheitseffekten von toxischen und allergenen Feinstaubkomponenten, wie Ruß, PAK und Proteine. ROIs sind vermutlich auch an der Zersetzung von Ozon auf mineralischem Staub und an der Bildung sowie am Wachstum von sekundären organischen Aerosolen beteiligt. Darüber hinaus bilden ROIs eine Verbindung zwischen atmosphärischen und biosphärischen Mehrphasenprozessen (chemische und biologische Alterung).rn Organische Verbindungen können als amorpher Feststoff oder in einem halbfesten Zustand vorliegen, der die Geschwindigkeit von heterogenen Reaktionenen und Mehrphasenprozessen in Aerosolen beeinflusst. Strömungsrohr-Experimente zeigen, dass die Ozonaufnahme und die oxidative Alterung von amorphen Proteinen durch Bulk-Diffusion kinetisch limitiert sind. Die reaktive Gasaufnahme zeigt eine deutliche Zunahme mit zunehmender Luftfeuchte, was durch eine Verringerung der Viskosität zu erklären ist, bedingt durch einen Phasenübergang der amorphen organischen Matrix von einem glasartigen zu einem halbfesten Zustand (feuchtigkeitsinduzierter Phasenübergang). Die chemische Lebensdauer reaktiver Verbindungen in organischen Partikeln kann von Sekunden bis zu Tagen ansteigen, da die Diffusionsrate in der halbfesten Phase bei niedriger Temperatur oder geringer Luftfeuchte um Größenordnungen absinken kann. Die Ergebnisse dieser Studie zeigen wie halbfeste Phasen die Auswirkung organischeer Aerosole auf Luftqualität, Gesundheit und Klima beeinflussen können. rn
Resumo:
The concentration of CO2 in the atmosphere is projected to reach twice the preindustrial level by the middle of the 21st century. This increase will reduce the concentration of [CO3]2- of the surface ocean by 30% relative to the preindustrial level and will reduce the calcium carbonate saturation state of the surface ocean by an equal percentage. Using the large 2650 m3 coral reef mesocosm at the BIOSPHERE-2 facility near Tucson, Arizona, we investigated the effect of the projected changes in seawater carbonate chemistry on the calcification of coral reef organisms at the community scale. Our experimental design was to obtain a long (3.8 years) time series of the net calcification of the complete system and all relevant physical and chemical variables (temperature, salinity, light, nutrients, Ca2+,pCO2, TCO2, and total alkalinity). Periodic additions of NaHCO3, Na2CO3, and/or CaCl2 were made to change the calcium carbonate saturation state of the water. We found that there were consistent and reproducible changes in the rate of calcification in response to our manipulations of the saturation state. We show that the net community calcification rate responds to manipulations in the concentrations of both Ca2+ and [CO3]2- and that the rate is well described as a linear function of the ion concentration product, [Ca2+]0.69[[CO3]2-]. This suggests that saturation state or a closely related quantity is a primary environmental factor that influences calcification on coral reefs at the ecosystem level. We compare the sensitivity of calcification to short-term (days) and long-term (months to years) changes in saturation state and found that the response was not significantly different. This indicates that coral reef organisms do not seem to be able to acclimate to changing saturation state. The predicted decrease in coral reef calcification between the years 1880 and 2065 A.D. based on our long-term results is 40%. Previous small-scale, short-term organismal studies predicted a calcification reduction of 14-30%. This much longer, community-scale study suggests that the impact on coral reefs may be greater than previously suspected. In the next century coral reefs will be less able to cope with rising sea level and other anthropogenic stresses.
Resumo:
A combination of physical and chemical measurements and biological indicators identified nutrient impacts throughout an Australian subtropical river estuary. This was a balance of sewage inputs in the lower river and agricultural inputs in the mid-upper river, the combined influence being greater in the wet season due to greater agricultural surface runoff. Field sampling in the region was conducted at 6 sites within the river, over 5 surveys to encapsulate both wet and dry seasonal effects. Parameters assessed were tissue nitrogen (N) contents and delta(15)N signatures of mangroves and macroalgae, phytoplankton nutrient addition bioassays, and standard physical and chemical variables. Strong spatial (within river) and temporal (seasonal) variability was observed in all parameters. Poorest water quality was detected in the middle (agricultural) region of the river in the wet season, attributable to large diffuse inputs in this region. Water quality towards the river mouth remained constant irrespective of season due to strong oceanic flushing. Mangrove and macroalgal tissue delta(15)N and %N proved a successful combination for discerning sewage and agricultural inputs. Elevated delta(15)N and %N represented sewage inputs, whereas low delta(15)N and elevated %N was indicative of agricultural inputs. Phytoplankton bioassays found the system to be primarily responsive to nutrient additions in the warmer wet season, with negligible responses observed in the cooler dry season. These results indicate that the Tweed River is sensitive to the different anthropogenic activities in its catchment and that each activity has a unique influence on receiving water quality.