993 resultados para Photoluminescence emission


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gd1.95Eu0.4M0.01O3 (M = Li+ Na+ K+) nanophosphors have been synthesized by a low temperature solution combustion (LSC) method. Powder X-ray diffraction pattern (PXRD), scanning electron microscopy (SEM), UV-vis and photoluminescence (PL) measurements were carried out to characterize their structural and luminescent properties. The excitation and emission spectra indicated that the phosphor could be well excited by UV light (243 nm) and emit red light about 612 nm. The effect of alkali co-dopant on PL properties has been examined. The results showed that incorporation of Li+, Na+ and K+ in to Gd2O3:Eu3+ phosphor would lead to a remarkable increase of photoluminescence. The PL intensity of Gd2O3:Eu3+ phosphor was improved evidently by co-doping with Li+ ions whose radius is less than that of Gd3+ and hardly with Na+, K+ whose radius is larger than that of Gd3+. The effect of co-dopants on enhanced luminescence was mainly regarded as the result of a suitable local distortion of crystal field surrounding the Eu3+ activator. These results will play an important role in seeking some more effective co-dopants. (C) 2011 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CaSiO3:Dy3+ (1-5 mol%) nanophosphors have been prepared by a low temperature solution combustion method. The structural and luminescence (ionoluminescence; IL and photoluminescence; PL) studies have been carried out for pristine and ion irradiated samples. The XRD patterns of pristine sample show a prominent peak at (320) for the monoclinic structure of beta-CaSiO3. Upon ion irradiation, the intensity of the prominent peak is decreased at the fluence of 7.81 x 10(12) ions cm(-2) and at higher fluence of 15.62 x 10(12) ions cm(-2), the prominent peak completely vanishes. The decrease in peak intensity might be due to the stress induced point defects. On-line IL and in situ PL studies have been carried out on pelletized samples bombarded with 100 MeV Si7+ ions with fluences in the range (7.81-15.62) x 10(12) ions cm(-2). The characteristic emission peaks at 481,574, 664 and 754 nm recorded in both IL and PL are attributed to the luminescence centers activated by Dy3+ ions. It is found that IL and PL emissions intensity decreases with increase in Si7+ ion fluence. The decrease in intensity can be due to the destruction of Si-O-Si and O-Si-O type species present on the surface of the sample. FTIR studies also confirm the Si-O-Si and O-Si-O type species observed to be sensitive for swift heavy ion (SHI) irradiated samples. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gd2O3:Eu3+ (4 mol%) co-doped with Bi3+ (Bi = 0, 1, 3, 5, 7, 9 and 11 mol%) ions were synthesized by a low-temperature solution combustion method. The powders were calcined at 800A degrees C and were characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), Fourier transform infrared and UV-Vis spectroscopy. The PXRD profiles confirm that the calcined products were in monoclinic with little cubic phases. The particle sizes were estimated using Scherrer's method and Williamson-Hall plots and are found to be in the ranges 40-60 nm and 30-80 nm, respectively. The results are in good agreement with TEM results. The photoluminescence spectra of the synthesized phosphors excited with 230 nm show emission peaks at similar to 590, 612 and 625 nm, which are due to the transitions D-5(0)-> F-7(0), D-5(0)-> F-7(2) and D-5(0)-> F-7(3) of Eu3+, respectively. It is observed that a significant quenching of Eu3+ emission was observed under 230 nm excitation when Bi3+ was co-doped. On the other hand, upon 350 nm excitation, the luminescent intensity of Eu3+ ions was enhanced by incorporation of Bi3+ (5 mol%) ions. The introduction of Bi3+ ions broadened the excitation band of Eu3+ of which a new strong band occurred ranging from 320 to 380 nm. This has been attributed to the 6s(2)-> 6s6p transition of Bi3+ ions, implying a very efficient energy transfer from Bi3+ ions to Eu3+ ions. The gamma radiation response of Gd2O3:Eu3+ exhibited a dosimetrically useful glow peak at 380A degrees C. Using thermoluminescence glow peaks, the trap parameters have been evaluated and discussed. The observed emission characteristics and energy transfer indicate that Gd2O3:Eu3+, Bi3+ phosphors have promising applications in solid-state lighting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermoluminescence (TL) measurements were carried out on undoped and Mn2+ doped (0.1 mol%) yttrium aluminate (YAlO3) nanopowders using gamma irradiation in the dose range 1-5 kGy. These phosphors have been prepared at furnace temperatures as low as 400 degrees C by using the combustion route. Powder X-ray diffraction confirms the orthorhombic phase. SEM micrographs show that the powders are spherical in shape, porous with fused state and the size of the particles appeared to be in the range 50-150 nm. Electron Paramagnetic Resonance (EPR) studies reveal that Mn ions occupy the yttrium site and the valency of manganese remains as Mn2+. The photoluminescence spectrum shows a typical orange-to-red emission at 595 nm and suggests that Mn2+ ions are in strong crystalline environment. It is observed that TL intensity increases with gamma dose in both undoped and Mn doped samples. Four shouldered TL peaks at 126, 240, 288 and 350 degrees C along with relatively resolved glow peak at 180 degrees C were observed in undoped sample. However, the Mn doped samples show a shouldered peak at 115 degrees C along with two well defined peaks at similar to 215 and 275 degrees C. It is observed that TL glow peaks were shifted in Mn doped samples. The kinetic parameters namely activation energy (E), order of kinetics (b), frequency factor (s) of undoped, and Mn doped samples were determined at different gamma doses using the Chens glow peak shape method and the results are discussed in detail. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium dioxide (TiO2) thin films were deposited on fused quartz substrates by electron beam evaporation method at room temperature. The films were annealed at different temperatures in ambient air. The surface morphology/roughness at different annealing temperatures were analyzed by atomic force microscopy (AFM). The crystallinity of the film has improved with the increase of annealing temperature. The effect of annealing temperature on optical, photoluminescence and Raman spectra of TiO2 films were investigated. The refractive index of TiO2 films were studied by envelope method and reflectance spectra and it is observed that the refractive index of the films was high. The photoluminescence intensity corresponding to green emission was enhanced with increase of annealing temperature. The peaks in Raman spectra depicts that the TiO2 film is of anatase phase after annealing at 300 degrees C and higher. The films show high refractive index, good optical quality and photoluminescence characteristics suggest that possible usage in opto-electronic and optical coating applications. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the synthesis of trigonal and tetragonal phase GeO2 films/microrods from a Ge wafer/powder by thermal oxidation. Both trigonal and tetragonal GeO2 exhibit excitation-dependent luminescence. Trigonal GeO2 exhibits strong green luminescence while tetragonal GeO2 exhibits strong blue luminescence when excited with ultra-violet light. Yellow-red luminescence is observed when both the phases are excited with green light. The emission wavelength varies almost linearly with the excitation wavelength both for trigonal and tetragonal GeO2. The variation is significant in the case of tetragonal GeO2, indicating a potential wavelength converter material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Li+-doped Gd2O3:Eu3+ phosphors have been studied as potential red phosphors for application to field emission displays. The Li+-doped and undoped Gd2O3:Eu3+ phosphors were synthesized by low temperature solution combustion method. The enhanced luminescence was regarded as the result of the creation of oxygen vacancies due to the Gd3+ sites occupied by Li+ ions, the alteration of the crystal field surrounding the activator Eu3+ ions owing to the incorporation of Li+ into interstial sites. The result in a remarkable increase on photoluminescence and the strong emission was observed at 612 nm by a factor of 4.1 in comparison with that of undoped sample.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Red light emitting cubic Y1.95Eu0.05O3 nanophosphors have been synthesized by a low temperature solution combustion method using ethylene diamine tetra acetic acid (EDTA) as fuel. The systematic studies on the effect of calcination temperature on its structural, photoluminescence (PL), and thermoluminescence (TL) properties were reported. The crystallinity of the samples increases, and the strain is reduced with increasing calcination temperature. SEM micrographs reveal that samples lose their porous nature with an increase in calcination temperature. PL spectra show that the intensity of the red emission (611 nm) is highly dependent on the calcination temperature and is found to be 10 times higher when compared to as-formed samples. The optical band gap (E-g) was found to reduce with an increase of calcination temperature due to reduction of surface defects. The thermoluminescence (TL) intensity was found to be much enhanced in the 1000 degrees C calcined sample. The increase of PL and TL intensity with calcination temperature is attributed to the decrease of the nonradiative recombination probability, which occurs through the elimination of quenching defects. The trap parameters (E, b, s) were estimated from Chen's glow peak shape method and are discussed in detail for their possible usage in dosimetry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mn2+ doped (0-50.0 molar %) ZnS d-dots have been synthesized in water medium by using an environment friendly low cost chemical technique. Tunable dual emission in UV and yellow-orange regions is achieved by tailoring the Mn2+ doping concentration in the host ZnS nanocrystal. The optimum doping concentration for achieving efficient photoluminescence (PL) emission is determined to be similar to 1.10 (at. %) corresponding to 40.0 (molar %) of Mn2+ doping concentration used during synthesis. The mechanism of charge transfer from the host to the dopant leading to the intensity modulated tunable (594-610 nm) yellow-orange PL emission is straightforwardly understood as no capping agent is used. The temperature dependent PL emission measurements are carried out, viz., in 1.10 at. % Mn2+ doped sample and the experimental results are explained by using a theoretical PL emission model. It is found that the ratio of non-radiative to radiative recombination rates is temperature dependent and this phenomenon has not been reported, so far, in Mn2+ doped ZnS system. The colour tuning of the emitted light from the samples are evident from the calculated chromaticity coordinates. UV light irradiation for 150 min in 40.0 (molar %) Mn2+ doped sample shows an enhancement of 33% in PL emission intensity. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4795779]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report tuning of photoluminescence enhancement and quenching from closed packed monolayers of cadmium selenide quantum dots doped with gold nanoparticles. Plasmon-mediated control of the emission intensity from the monolayers is achieved by varying the size and packing density of the quantum dots as well as the doping concentration of gold nanoparticles. We observe a unique packing density dependent crossover from enhancement to quenching and vice versa for fixed size of quantum dots and doping concentration of gold nanoparticles. We suggest that this behavior is indicative of a crossover from single particle to collective emission from quantum dots mediated by gold nanoparticles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extensively studied Mn-doped semiconductor nanocrystals have invariably exhibited photoluminescence over a narrow energy window of width <= 150 meV in the orange-red region and a surprisingly large spectral width (>= 180 meV), contrary to its presumed atomic-like origin. Carrying out emission measurements on individual single nanocrystals and supported by ab initio calculations, we show that Mn PL emission, in fact, can (i) vary over a much wider range (similar to 370 meV) covering the deep green-deep red region and (ii) exhibit widths substantially lower (similar to 60-75 meV) than reported so far, opening newer application possibilities and requiring a fundamental shift in our perception of the emission from Mn-doped semiconductor nanocrystals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report focuses on the structural and optical properties of the GaN films grown on p-Si (100) substrates along with photovoltaic characteristics of GaN/p-Si heterojunctions fabricated with substrate nitridation and in absence of substrate nitridation. The high resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM), Raman and photoluminescence (PL) spectroscopic studies reveal that the significant enhancement in the structural as well as in the optical properties of GaN epifilms grown with silicon nitride buffer layer when compared with the sample grown without silicon nitride buffer layer. The low temperature PL shows a free excitonic (FX) emission peak at 3.51 eV at the temperature of 5 K with a very narrow line width of 35 meV. Temperature dependent PL spectra follow the Varshni equation well and peak energy blue shifts by similar to 63 meV from 300 to 5 K. Raman data confirms the strain free nature and reasonably good crystallinity of the films. The GaN/p-Si heterojunctions fabricated without substrate nitridation show a superior photovoltaic performance compared to the devices fabricated in presence of substrate nitridation. The discussions have been carried out on the junction properties. Such single junction devices exhibit a promising fill factor and conversion efficiency of 23.36 and 0.12 %, respectively, under concentrated AM1.5 illumination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoindentation technique is utilized to examine mechanical property variation in Eu doped Na0.5Bi0.5 TiO3 (NBT). Doping levels of Eu in NBT is systematically varied. Dilute doping results in a linear reduction in both modulus and hardness. At higher concentrations, a recovery of the mechanical properties (to undoped NBT values) is observed. These experimental trends mirror variations in the optical emission intensities with Eu concentration. Observed trends are rationalized on the basis of a model, which hypothesizes phase segregation beyond a critical Eu doping level. Such segregation leads to the formation of pure NBT, nano-Eu saturated NBT, and nano-mixed Eu oxides in the microstructure. Pure NBT is optically inactive, while saturated Eu:NBT is a much better emitter when compared to europium oxide. Hence beyond the critical concentration, luminescence signal comes primarily from the saturated Eu:NBT phase. The model presented is supported by nanoindentation, and spectroscopic results. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A controllable synthesis of phase pure wurtzite (WZ) ZnS nanostructures has been reported in this work at a low temperature of similar to 220 degrees C using ethylenediamine as the soft template and by varying the molar concentration of zinc to sulphur precursors as well as by using different precursors. A significant reduction in the formation temperature required for the synthesis of phase pure WZ ZnS has been observed. A strong correlation has been observed between the morphology of the synthesized ZnS nanostructures and the precursors used during synthesis. It has been found from Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) image analyses that the morphology of the ZnS nanocrystals changes from a block-like to a belt-like structure having an average length of similar to 450 nm when the molar ratio of zinc to sulphur source is increased from 1 : 1 to 1 : 3. An oriented attachment (OA) growth mechanism has been used to explain the observed shape evolution of the synthesized nanostructures. The synthesized nanostructures have been characterized by the X-ray diffraction technique as well as by UV-Vis absorption and photoluminescence (PL) emission spectroscopy. The as-synthesized nanobelts exhibit defect related visible PL emission. On isochronal annealing of the nanobelts in air in the temperature range of 100-600 degrees C, it has been found that white light emission with a Commission Internationale de I'Eclairage 1931 (CIE) chromaticity coordinate of (0.30, 0.34), close to that of white light (0.33, 0.33), can be obtained from the ZnO nanostructures obtained at an annealing temperature of 600 degrees C. UV light driven degradation of methylene blue (MB) dye aqueous solution has also been demonstrated using as-synthesized nanobelts and similar to 98% dye degradation has been observed within only 40 min of light irradiation. The synthesized nanobelts with visible light emission and having dye degradation activity can be used effectively in future optoelectronic devices and in water purification for cleaning of dyes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GdAlO3, GdAlO3:Eu3+ and GdAlO3:Eu3+:Bi3+ nanophosphors were synthesised by solution combustion technique. Pure orthorhombic phase was obtained from powder X-ray diffraction (PXRD) studies. Scanning electron microscopy (SEM) micrographs showed the porous, agglomerated and irregular shaped particles. The particle size obtained by transmission electron microscopy (TEM) measurement was in good agreement with the values obtained by Debye Scherrer's and W-H plots. The selected area electron diffraction (SAED) pattern show single crystalline nature of the sample. Photoluminescence (PL) measurements were carried out for GdAlO3:Eu3+ and GdAlO3:Eu3+:Bi3+ phosphors excited at a wavelength of 274 nm. The characteristic emission peaks of Eu3+ ions were recorded at 590, 614, 655 and 695 nm corresponding to D-5(0) -> F-7(J) (J = 1, 2, 3, 4) transitions respectively. However, with addition of Bi3+ ions in GdAlO3:Eu3+, PL intensity drastically enhanced. Orange red color was tuned to deep red color with the addition of Bi3+ ions in GdAlO3:Eu3+ phosphor. Therefore, the phosphor was highly useful as red component in WLEDs. A single well resoled glow peak at 225 degrees C was recorded in GdAlO3 and GdAlO3:Eu3+. Further, with addition of Bi3+ ions, an additional peak at 300 degrees C was recorded. TL glow curves of different UV-exposed GdAlO3:Eu3+:Bi3+ show two TL peaks at 207 and 300 degrees C respectively. The 207 degrees C peak show simple glow peak structure and its intensity increases linearly up to 25 mm and after that it decrease. (C) 2014 Elsevier B.V. All rights reserved.