520 resultados para Petrographic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chinese National Antarctic Research Expedition (CHTNARE) has collected 4480 meteorite specimens in the Grove Mountains, East Antarctica, from 1998 to 2003. According to the location characteristics and the diversity of the classification, the paper concludes that the Grove Mountains is another important meteorite concentration area in the Antarctica. The Concentration mechanisms at the site could be related to the last glacier activity and katabatic wind. An empirical model was proposed: 1) Probably during the Last Glacial Maximum, ice flow overrided the Gale Escarpment range in the area. Formerly concentrated meteorites were carried by the new glacier and stayed in the terminal moraine when the glacier retreated. 2) Blown by strong katabatic wind, Newly exposed meteorites on the ablation zone were scattered on the blue ice at the lee side of the Gale escarpment. Some of them would be buried when they were moved further onto the firn snow zone. Many floating meteorites stopped and mustered at the fringe of the moraine. The chemical-petrographic of 31 meteorites were assigned based on electron probe microanalyses, petrography and mineralogy, including 1 martian lherzolitic shergottite, 1 eucrite, 1 extreme fine grain octahedron iron meteorite, and 28 ordinary chondrites (the chemical groups: 7 H-group, 13 L-group, 6 LL-group, 2 L/LL group; the petrographic types: 6 unequilibrated type 3 and 22 equilibrated type 4-6). GRV99028 meteorite has the komatiite-like spinifex texture consisting of acicular olivine crystals and some hornblende-family minerals in the interstitial region. Possibly it has crystallized from a supercooled, impact-generated, ultramafic melt of the host chondrite, then experienced the retrogressive metamorphism. Four typical chondrule textures were studied: porphyritic texture, radiative texture, barred texture and glass texture. The minerals are characteristically enriched in MgO content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chinese eolian deposits are especially suitable for the studies of paleoclimatic changes, environmental magnetism and remanence acquisition mechanisms. In the past two decades, many studies have documented their magnetic properties. However, some important problems, such as the origin of magnetic minerals, the mechanisms for enhancing magnetic susceptibility and the lock-in effect, remain debatable. Therefore, it is essential to detail the rock-magnetic properties of the eolian deposits. This study shows thermomagnetic analyses, petrographic measurements and soil chemistry methods can be combined to obtain a better understanding of the sequence of magnetic mineral alterations during thermal treatment and of the pedogenic mechanism responsible for the susceptibility enhancement. This helps to further develop the interpretation of paleoclimate records in the Holocene eolian deposits along a NW-SE transect of the loess plateau. A partial heating/cooling method and X-ray diffraction (XRD) analysis were performed on representative samples of the present-day loess, in order to investigate mineralogical changes during thermal treatment. The temperature-dependent susceptibility (TDS) and XRD results show complex alteration of magnetic phases during heating and cooling. The 300 ℃ susceptibility hump in heating curves might be due to the production of maghemite from less magnetic lepidocrocite during heating. Goethite is transformed into hematite when heating to above 300 ℃. The susceptibility decrease from 300 ℃ to 450 ℃ can be interpreted as the conversion of maghemite to hematite. This thermal instability makes it possible to quantatively estimate the maghemite contribution to the pedogenically-enhanced susceptibility in loess or paleosols. Minor occurrence of thermally-stable maghemite in the present-day loess is possible; nevertheless, the TDS measurements show that the degree of the thermally-induced alteration is closely related to pedogenesis. The TDS measurement and XRD analysis results demonstrate that although magnetite and hematite both exist in the Holocene loess eolian deposits and their modern source area, magnetite is the predominant contributor to magnetic susceptibility. Both magnetite and hematite are the primary carriers of the remanent magnetization. Fine-grained maghemite, mainly produced by pedogenesis, is significantly responsible for enhancement of the magnetic susceptibility in the Chinese loess and paleosols. Since the degree of oxidation of magnetite grains depends on climate, the presence of maghemite has paleoclimatic significance, and variations in climate could be reflected as variations in the amount of low-temperature oxidation. If that is the case, the TDS curves can be used to compare the effects of climate at different sampling sites. The TDS results along the studied NW-SE transect suggest that stronger pedogenesis results in higher content of maghemite and greater susceptibility decrease during thermal treatment. This behavior seems to indicate that the final product of pedogenic magnetite in Chinese loess and paleosols is maghemite, which makes significant contributions to the enhanced magnetic susceptibility of Chinese eolian deposits. It is interesting to note that the 510 ℃ Hopkinson/alteration peak is larger in the present-day loess than in the black loam for each section. Obiviously, the Hopkinson/alteration peak of the Holocene eolian deposits is closely related to the degree of pedogenesis, which is a function of climate, and thus the peak itself could be a useful climate indicator. There are three effects that may be important in producing this trend. First, low-temperature oxidation preferentially affects the finer single-domain magnetites responsible for the Hopkinson peak, which is therefore suppressed in the more oxidized loams. Second, the possible production of uniaxial magnetite with shape anisotropy can also lead to a relatively muted Hopkinson peak. There is, additionally, a third alternative, and the one preferred here, that the natural alteration processes involved in pedogenic susceptibility enhancement have probably depleted the supply of iron-bearing precursor phases, so that less new magnetite is formed on heating. In summary, the TDS method is very reliable and highly sensitive in detecting magnetic phase changes in eolian deposits during thermal treatment, which are closely related to pedogenic processes. Thus, the studied NW-SE transect clearly exhibits paleoclimatically-induced mineral- and rock-magnetic variations. It is suggested that TDS can be used as a new method for the analysis of pedogenesis and climatic change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sedimentary-volcanic tuff (locally called "green-bean rock") formed during the early Middle Triassic volcanic event in Guizhou Province is characterized as being thin, stable, widespread, short in forming time and predominantly green in color. The green-bean rock is a perfect indicator for stratigraphic division. Its petrographic and geochemical features are unique, and it is composed mainly of glassy fragments and subordinately of crystal fragments and volcanic ash balls. Analysis of the major and trace elements and rare-earth elements ( REE), as well as the related diagrams, permits us to believe that the green-bean rock is acidic volcanic material of the calc-alkaline series formed in the Indosinian orogenic belt on the Sino-Vietnam border, which was atmospherically transported to the tectonically stable areas and then deposited as sedimentary-volcanic rocks there. According to the age of green-bean rock, it is deduced that the boundary age of the Middle-Lower Triassic overlain by the sedimentary-volcanic tuff is about 247 Ma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The High Grade Metamorphic Complex (HGMC) of Variscan basement of north Sardinia is characterized by the widespread of migmatites. This study is focused on two localities of NE Sardinia (Porto Ottiolu and Punta Sirenella) where ortho- and para-derivates migmatites outcrop. A geological and structural survey was carried out, leading to the realization of a geological schematic map of Punta Sirenella area. Several samples of different rocks were collected for petrographic, micro-structural minero-chemical and geochemical analyses. In the Porto Ottiolu area three main deformation phases have been identified; D1, characterized by tight folds with sub-horizontal axes, rarely preserved in paragneisses; D2, that produce a pervasive foliation oriented N100° 45°SW marked by biotite and sillimanite blastesis and locally transposed by shear zone oriented N170°; D3, late deformation phase caused symmetric folds with sub-horizontal axes with no axial plane schistosity. Leucosomes form pods and layers along S2 schistosity but also leucosomes along shear zones have been observed. In the Punta Sirenella area, three main deformation phases have been identified; D1, is manifested by the transposition of centimeter-sized leucosomes and is rarely observed in paragneisses were produce open folds with sub-vertical axes; D2, NW-SE oriented on whose XY plane three mineralogical lineation (quartz+plagioclase, fibrolite+quarz and muscovite) lie; D3, a ductile-brittle deformation phase that produce a mylonitc S3 foliation that locally become the most evident schistosity in the field oriented N140° steeply dipping toward NE. In both areas, leucosomes of sedimentary-derived migmatites are generally trondhjemitic pointing out for a H2O fluxed melting reaction, but also granitic leucosomes have been found, produced by muscovite dehydration melting. Leucosomes of migmatitic orthogneiss instead, have granitic compositions. Migmatization started early, during the compressional and crustal thickening (sin-D1, pre-D2) and was still active during exhumation stage. For each studied outcrop of migmatite pseudosections for the average mesosome composition have been calculated; these pseudosections have been used to model the P-T conditions of anatexis on the basis of the melt volume (%) of melt, Si/Al and Na/K molar ratios, modal content of garnet and Si content in metamorphic white mica. Further pseudosections have been calculated for the average composition of leucosomes in order to define the P-T conditions of the end of the crystallization through intersection of solidus curve and isopleths of Si content in white mica and/or XMg ratio in biotite. Thermodynamic modeling on ortho- and sedimentary-derived migmatites of Punta Sirenella yield P-T conditions of 1.1-1.3 GPa - 670-740°C for migmatitic event and 0.75-0.90 GPa - 660-730°C for the end of crystallization. These conditions are fit well with previous studies on adjacent rocks. Modeling of Porto Ottiolu ortho- and sedimentary-derived migmatites yield P-T conditions of 0.85-1.05 GPa - 690-730°C for migmatitic event and 0.35-0.55 GPa - 630-690°C strongly affected by re-equilibration during exhumation, expecially for crystallization conditions. Geochemical analyses of samples belonging to Porto Ottiolu and Punta Sirenella orthogneisses show a strong link with those of other orthogneisses outcropping in NE Sardinia (for instance, Lode-Mamone and Golfo Aranci) that are considered the intrusive counterparts of middle-Ordovician metavolcanics rocks outcropping in the Nappe Zone. Thus, the studied ortogneiss bodies, even lacking radiometric data, can be considered as belonging to the same magmatic cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento apresentada à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Doutror em Ciências da Terra.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Silurian-Devonian Galway Granite Complex (GGC ~425-380Ma) is defined here as a suite of granitoid plutons that comprise the Main Galway Granite Batholith and the Earlier Plutons. The Main Batholith is a composite of the Carna Pluton in the west and the Kilkieran Pluton in the east and extends from Galway City ~130km to the west. The Earlier Plutons are spatially, temporally and structurally distinct, situated northwest of the Main Batholith and include the Roundstone, Omey, Inis and Letterfrack Plutons. The majority of isotopic and structural data currently available pertain to the Kilkieran Pluton, several tectonic models have already been devised for this part of the complex. These relate emplacement of the Kilkieran Pluton to extension across a large east-west Caledonian lineament, i.e. the Skird Rocks Fault, during late Caledonian transtension. No chronological data have been published that directly and accurately date the emplacement of the Carna Pluton or any of the Earlier Plutons. There is also a lack of data pertaining to the internal structure of these intrusions. Accordingly, no previous study has established the mechanisms of emplacement for the Earlier Plutons and only limited work is available for the Carna Pluton. As a consequense of this, constituents of the GGC have not previously been placed in a context relative to each other or to regional scale Silurio-Devonian kinematics. The current work focuses on the Omey, Roundstone and Carna Plutons. Here, results of detailed field and Anisotropy of Magnetic Susceptibiliy (AMS) fabric studies are presented. This work is complemented by geological mapping that focuses on fault dynamics and contact relationships. Interpretation of AMS data is aided by rock magnetic experiment data and petrographic microstructural evaluations of representative samples. A new geological map of the the Omey Pluton demonstrates that this intrusion has a defined roof and base which are gently inclined parallel to the fold hinge of the Connemara Antiform. AMS and petrographic data show the intrusion is cross cut by NNW-SSE shear zones that extend into the country rock. These pre-date and were active during magma emplacement. It is proposed that the Omey pluton was emplaced as a discordant phacolith. Pre-existing subvertical D5 faults in the host rock were reactived during emplacement, due to regional sinistral transpression, and served as centralised ascent conduits. A central portion of the Roundstone Pluton was mapped in detail for the first time. Two facies are identified, G1 forms the majority of the pluton and coeval G2 sheets cross cut G1 at the core of the pluton. NNW-SSE D5 faults mapped in the country rock extend across the pluton. These share a geometrical relationship with the distribution of submagmatic strain in the pluton and parallel the majoity of mapped subvertical G2 dykes. These data indicate that magma ascent was controlled by NNW-SSE conduits that are inherently related to those identifed in the Omey Pluton. It is proposed that the Roundstone Pluton is a punched laccolith, the symmetry and structure of which was controlled by pre-exising host rock structures and regional sinistral transpressive stress which presided during emplacement. Field relationships show the long axis of the Carna Pluton lies parallel to mulitple NNW-SSE shear zones. These are represented on a regional scale by the Clifden-Mace Fault which cross cuts the core of this intrusion. AMS and petrographic data show concentric emplacement fabrics were tectonically overprinted as magma cooled from the magmatic state due to this faulting. It is proposed that the Clifden-Mace Fault system was active during ascent and emplacement of the magma and that pluton inflation only terminated as this controlling structure went into compression due to the onset of regional transtension. U-Pb zircon laser ablation inductively coupled mass spectrometry (LA-ICP-MS) data has been compiled from four sample sites. New geochronological data from the Roundstone Pluton (RD1 = ± 3.2Ma) represent the oldest age determination obtained from any member of the GGC and demonstrates that this pluton predates the Carna Pluton by ~10Ma and probably intruded synchronously with the Omey Pluton (~422.5 ± 1.7Ma). Chronological data from the Carna Pluton (CN2 = 412.9 ± 2.5Ma; CN3 = 409.8 ± 7.2Ma; CN4 = 409.6 ± 3.6Ma) represent the first precise magma crystallisation age for this intrusion. This work shows this pluton is 10Ma older than the Kilkieran Pluton and that the supply of magma into the Carna Pluton had terminated by ~409Ma. Chronological, magnetic and field data have been utilised to evaluate the kinematic evolution of the Caledonides of western Ireland throughout the construction of the GGC. It is proposed that the GGC was constructed during four distinct episodes. The style of emplacement and the conduits used for magma transport to the site of emplacement was dependent on the orientation of local structures relative to the regional ambiant stress field. This philosophy is used to critically evaluate and progress existing hypotheses on the transition from regional transpression to regional transtension at the end of the Caledonian Orogeny.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soils and saprolites developed from interbedded shales and limestones of the Conasauga Group are widespread in the Valley and Ridge Province of East Tennessee. Thin sections from four soil profiles were examined by petrographic and scanning electron microscopy including backscatter electron and energy-dispersive X-ray analyses. Iron and manganese released by weathering had migrated differentially downward and precipitated as crystalline and noncrystalline oxides. Oxides were observed as nodules, granular particulates, pore fillings, and coatings on other minerals, packing voids, vesicles, channels, and chambers. Iron oxides formed predominantly as coatings on packing-void walls and on laminated clays in vesicles and channels. Manganese oxides occurred as an early replacement phase of packing voids and of fracture-filling carbonate minerals. Iron oxides were dominant in moderately well-drained and oxidized horizons of the soil solum, whereas manganese oxides were abundant in the oxidized and moderately leached saprolite zone where the water table fluctuates seasonally. Therefore, a manganese enrichment zone, on a bulk soil basis, occurred generally below the iron oxide zone in the soil profile. Such differential migration and accumulation of iron and manganese have been controlled by localized soil microenvironments. Micromorphologic features observed in this study are important in land-use evaluation for hazardous waste disposal. © 1990.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hosted in a wide depression within the Berici Hills (Venetian Plain), outside the maximum extent reached by LGM glaciers, Lake Fimon preserves an almost continuous archive of landscape and climate changes from the penultimate glacial maximum onwards. The stratigraphic succession deposited at the lake bottom has been investigated in three deep cores by means of pollen analysis, petrographic composition, magnetic susceptibility, LOI, and geochronology. Tephra layers have been identified and are currently under study.
Pollen data provide the first continuous vegetation record in northern Italy for the last 150 ky. Terrestrial vegetation varied from interglacial warm-temperate broad leaved to oceanic mixed forests, from boreal conifer forests to open forest-steppes of colder climate. Phases of major forest expansion and reduction have been correlated to isotopic events described in ice (NGRIP), stalagmite (Antro del Corchia) and marine records. Persistent afforestation recorded in northern Italy even during cold phases of the full pleniglacial is consistent with mesoscale paleoclimate simulations suggesting that a sharp rainfall gradient across the Alps enabled the survival of woody species in the southern alpine foreland.
Integrating litho- and biostratigraphical data, we identified sedimentation regìmes, accumulation rates, sediment sources and supply both for the Lake Fimon cores and the adjacent Venetian Plain, allowing a direct comparison with major glacial advances in the Alpine area, deglaciation pulses, and glacio-eustatic displacements of the northern Adriatic shoreline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The island of São Jorge (38º 45’ 24’’ N - 28º 20’ 44’’W and 38º 33’ 00’’ N - 27º 44’ 32’’ W) is one of the nine islands of the Azores Archipelago that is rooted in the Azores Plateau, a wide and complex region which encompasses the triple junction between the American, Eurasia and Nubia plates. São Jorge Island has grown by fissural volcanic activity along fractures with the regional WNW-ESE trend, unveiling the importance of the regional tectonics during volcanic activity. The combination of the volcanostratigraphy (Forjaz & Fernandes, 1975; and Madeira, 1998) with geochronological data evidences that the island developed during two main volcanic phases. The first subaerial phase that occurred between 1.32 and 1.21 Ma ago (Hildenbrand et al. 2008) is recorded on the lava sequence forming the cliff at Fajã de São João, while the second phase started at 757 ka ago, is still active, and edified the rest of the island. This second phase edified the east side of the island that corresponds to Topo Volcanic Complex, in the period between 757 and 543 ka ago, while the west side named Rosais Volcanic Complex, started at 368 ka ago (Hildenbrand et al. 2008) and was still active at 117 ka ago. After the onset of Rosais, volcanic activity migrates to the center of São Jorge edifying Manadas Volcanic Complex. The volcanism on São Jorge is dominantly alkaline, with a narrow lithological composition ranging between the basanites/tefrites through the basaltic trachyandesites, in spite of this the two volcanic phases show distinct mineralogical, petrographic and geochemical characteristics that should be related with different petrogenetic conditions and growth rates of the island. Abstract viii During the first volcanic phase, growth rates are faster (≈3.4 m/ka), the lavas are slightly less alkaline and plagioclase-richer, pointing to the existence of a relative shallow and dynamic magma chamber where fractional crystallization associated with gravitational segregation and accumulation processes, produced the lavas of Fajã de São João sequence. The average growth rates during the second volcanic phase are lower (≈1.9 m/ka) and the lavas are mainly alkaline sodic, with a mineralogy composed by olivine, pyroxene, plagioclase and oxide phenocrysts, in a crystalline groundmass. The lavas are characterized by enrichment in incompatible trace element and light REE, but show differences for close-spaced lavas that unveil, in some cases, slight different degrees of fertilization of the mantle source along the island. These differences might also result from higher degrees of partial melting, as observed in the early stages of Topo and Rosais volcanic complexes, of a mantle source with residual garnet and amphibole, and/or from changing melting conditions of the mantle source as pressure. The subtle geochemical differences of the lavas contrast with the isotopic signatures, obtained from Sr-Nd-Pb-Hf isotopes, that São Jorge Island volcanism exhibit along its volcanic complexes. The lavas from Topo Volcanic Complex and from the submarine flank, i.e. the lavas located east of Ribeira Seca Fault, sample a mantle source with similar isotopic signature that, in terms of lead, overlaps Terceira Island. The lavas from Rosais and Manadas volcanic complexes, the western lavas, sample a mantle source that becomes progressively more distinct towards the west end of the island and that, in terms of lead isotopes, trends towards the isotopic composition of Faial Island. The two isotopic signatures of São Jorge, observed from the combination of lead isotopes with the other three systems, seem to result from the mixing of three distinct end-members. These end-members are (1) the common component related with the Azores Plateau and the MAR, (2) the eastern component with a FOZO signature and possibly related with the Azores plume located beneath Terceira, and (3) the western component, similar to Faial, where the lithosphere could have been entrained by an ancient magmatic liquid, isolated for a period longer than 2Ga. The two trends observed in the island reinforce the idea of small-scale mantle heterogeneities beneath the Azores region, as it has been proposed to explain the isotopic diversity observed in the Archipelago.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Engenharia Geotécnica e Geoambiente

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The McArthur Township area in the Archean Abitibi Belt of northeast Ontario contains northwesterly trending volcanic rocks which are located on a limb of a large syncline. The axial trace of the syncline passes through the adjacent Douglas Township. The Archean volcanic rocks and associated sedimentary rocks are intruded and deformed by two large plutons and a few smaller hypabyssal intrusions. A petrographic and geochemical study of the Precambrian rocks exposed 1n the study area was undertaken in order to investigate the metamorphic grade and geochemical characteristics of the rocks. All the samples were studied with the microscope and analysis of 20 major and trace elements were determined on a selection of the less altered specimens by x-ray fluorescence. Three different periods of igneous activity have occurred in the study area. The first two periods were dominated by volcanic extrusive rocks accompanied by gabbroic sills. The third cycle is the diapiric intrusion of the granitic plutons and subsequent metamorphism of the older rocks to the low to medium grade. Two periods of sedimentation are also recognized in the study area which occurred after the first and second cycle of volcanism. Chemically, the lavas are subdivided into three main associations: (1) The komatiitic association is characterized by high MgO, high Ni, low Ti02 and a low FeO*/(FeO* + MgO) ratio. They occupy the base of each volcanic cycle and some of the flows exhibit spinifex textures. (2) The tholeiitic association displays distinct iron and titanium enrichment trends in the intermediate membersor -i r (3) The calc-alkaline association contains low FeO* and TI02 and high Ni contents relative to modern calc-alkaline types. They are formed at the end of each cycle of volcanism and overlie the tholeiitic flows. All three associations of the first volcanic cycle are exposed in the study area, while the second cycle is represented by a komatiltic sequence. The volcanic rocks were possibly formed by multiple partial melting of the Archean mantle to produce parental magmas under various P - T conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three repetitive sequences of northward youngIng, east striking, linear, volcano-sedimentary units are found in the late Archaean BeardmoreGeraldton greenstone belt, situated within the Wabigoon subprovince of the Superior Province of northwestern Ontario. The volcanic components are characterised by basaltic flows that are pillowed at the top and underlain by variably deformed massive flows which may In part be intrusive. Petrographic examination of the volcanic units indicates regional metamorphism up to greenschist facies (T=3250 C - 4500 C, P=2kbars) overprinted by a lower amphibolite facies thermal event (T=5750 C, P=2kbars) confined to the south-eastern portion of the belt. Chemical element results suggest olivine, plagioclase and pyroxene are the main fractionating mineral phases. Mobility studies on the varIOUS chemical elements indicate that K, Ca, Na and Sr are relatively mobile, while P, Zr, Ti, Fet (total iron = Fe203) and Mg are relatively immobile. Discriminant diagrams employing immobile element suggests that the majority of the samples are of oceanic affinity with a minor proportion displaying an island arc affinity. Such a transitional tectonic setting IS also refle.cted in REE data where two groups of volcanic samples are recognised. Oceanic tholeiites are LREE depleted with [La/Sm] N = 0.65 and a relatively flat HREE profile with [Sm/Yb] N = 1.2. Island arc type basalts (calc-alkaline) are LREE enriched, with a [La/Sm] N = 1.6, and a relatively higher fractionated HREE profile with [Sm/Yb] N = 1.9. Petrogenetic modelling performed on oceanIC tholeiites suggests derivation from a depleted spinel lherzolite source which undergoes 20% partial melting. Island arc type basalts can be derived by 10% partial melting of a hypothetical amphibolitised oceanic tholeiite source. The majority of the volcanic rocks in the Beardmore-Geraldton Belt are interpreted to represent fragments of oceanic crust trapped at a consuming plate margin. Subsequent post accretionary intrusion of gabbroic rocks (sensu lato) with calc-alkaline affinity is considered to result in the apparent hybrid tectonic setting recognized for the BGB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Owing to the fact that low-Mg calcite fossil shells are so important in paleoceanographic research, 249 brachiopod, cement and matrix specimens from two neighboring localities (Jemez Springs and Battleship Rock), of the Upper Pennsylvanian Madera Formation were analyzed. Of which, about 86% of the Madera brachiopods are preserved in their pristine mineralogy, microstructure and geochemistry. Cement and matrix samples, in contrast, have been subjected to complete but variable post-deposition~1 alteration. It is confirmed that the stable isotope data of brachiopods are much better than that of matrix material in defining depositional parameters. Because there is no uniform or constant relationship between the two data bases (e.g., from 0.1 to 3.0%0 for 0180 and from 0.2 to 6.7%0 for 013C in this study), it is not possible to make corrections for the matrix data. Regarding the two stratigraphic sections, elemental and petrographic analyses suggest that Jemez Springs is closer to Penasco Uplift than Battleship Rock. Seawater at Jemez Springs is more aerobic, and the water chemistry is more influenced by continental sources than that at Battleship Rock. In addition, there is a relatively stronger dolomitization in the mid-section of the Battleship Rock. Results further suggest that no significant biogenic fractionation or vital effects occurred during their shell secretion, suggesting that the Madera brachiopods incorporated oxygen and carbon isotopes in equilibrium with the ambient seawater. This conclusion is not only drawn from the temporal and spatial analyses, but also supported by brachiopod inter-generic comparison (Composita and Neospirifer) and statistical analysis ( t-test).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regional structural analysis of the Timmins area indicates four major periods of tectonic deformation. The DI deformation is characterized by a series of isoclinal FI folds which are outlined in the study area by bedding, pillow tops and variolitic flows. The D2 deformation developed the Porcupine Syncline and refolded the Fl folds about a NE. axis. A pervasive S2 foliation developed during low grade (greenschist) regional metamorphism associated with the D2 deformation. The S2 foliation developed south of the Destor-Porcupine Break. The third phase of tectonic D3 deformation is recognized by the development of a S3 sub-horizontal crenulation cleavage which developed on the plane of the S2 foliation. No meso scopic folds are associated with this deformation. The 8 3 crenulation cleavage is observed south of the Destor-Porcupine Break. The D4 tectonic deformation is recorded as a subvertical S4 crenulation cleavage which developed on the plane of the S2 foliation and also offsets the S3 crenulation cleavage. Macroscopic F4 folds have refolded the F2 axial plane. No metamorphic recrystallization is associated with this deformation. The S4 crenulation cleavage is observed south of the Destor-Porcupine Break. Petrographic evidence indicates that the Timmins area has been subjected to pervasive regional low grade (greenschist) metamorphism which has recrystallized the original mineralogy. South of the study are~ the Donut Lake ultramafic lavas have been subjected to contact medium grade (amphibolite facies) metamorphism associated with the intrusion of the Peterlong Lake Complex. The Archean volcanic rocks of the Timmins area have been subdivided into komatiitic, tholeiitic and calcalkaline suites based on Zr, Ti0 2 and Ni. The three elements were used because of their r e lative immobility during subsequent metamorphic events. Geochemical observations in the Timmins area indicates that the composition of the Goose Lake and Donut Lake Formations are a series of peridotitic, pyroxenitic and basaltic komatiites. The Lower Schumacher Formation is a sequence of basaltic komatiites while the upper part of the Lower Schumacher Formation is an intercalated sequence of basaltic komatiites and low Ti0 2 tholeiites. The variolitic flows are felsic tholeiites in composition and geochemical evidenc e sugg ests that they developed as a n immiscible splitting of a tholeiitic magma. The Upper Schumacher Formation is a sequence of tholeiitic rocks dis p laying a mild iron enrichment. The Krist and Boomerang Formations are the felsic calc-alkaline rocks of the study area which are characteristically pyroclastic. The Redstone Fo rmation is dominantly a calc-alkali ne sequence of volcani c rocks whose minor mafic end me mbers exposed in 1t.he study hav e basaltic komatiitic compositions. Geochemical evidence sugges ts that the Keewatin-type se dimentary rocks have a composition similar to a quartz diorite or a granodiorite. Fi e l d obs ervations and petrographic evidence suggests that they were derived fr om a distal source and now repr esent i n part a turbidite sequence. The Timiskaming-type sedimentary rocks approach the c omp osi t ion of the felsic calc-alkaline rocks of the study area . The basal conglomerate in the study are a sugge s ts that th e uni t was derived fr om a proximal source. Petrographic and ge ochemical evidence suggests that the peridotitic and pyroxenitic komatiites originated as a 35-55% partial melt within the mantle, in excess of 100 Km. depth. The melt ros e as a diapir with the subsequent effusion of the ultramafic lavas, The basaltic komatiites and tholeiitic rocks originated in the mantle from lesser degrees of partial melting and fractionated in low pressure chambers. Geochemical evidence suggests a "genetic link" between the basaltic komatiites and tholeiites, The calc-alkaline rocks developed as a result of the increa.se In PO in the magma chamber. The felsic calcalkaline rocks are a late stage effusion possibly the last major volcanic eruptions in the area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbial ichnofossils in volcanic rocks provide a significant record of subsurface microbes and potentially extraterrestrial biosignatures. Here, the textures, mineralogy, and geochemistry of two continental basaltic hydrovolcanic deposits - Reed Rocks and Black Hills - in the Fort Rock Volcanic Field (FRVF) are investigated. Methods include petrographic microscopy, micro and powder X-ray diffraction, SEM/BSE/EDF imaging, energy dispersive spectroscopy, stable isotopes, and X-ray fluorescence. Petrographic analysis revealed granular and tubular textures with biogenic morphologies that include terminal enlargements, septate divisions, branching forms, spiral filaments, and ovoid bodies resembling endolithic microborings described in ocean basalts. They display evidence of behaviour and a geologic context expressing their relative age and syngenicity. Differences in abiotic alteration and the abundance/morphotype assemblage of putative microborings between the sites indicate that water/rock ratio, fluid composition and flux, temperature and secondary phase formation are influences on microboring formation. This study is the first report of reputed endolithic microborings in basalts erupted in a continental lacustrine setting.