945 resultados para Perry, Scott
Resumo:
Aims: The aim of the study was to investigate the combined antimicrobial action of the plantderived volatile carvacrol and high hydrostatic pressure (HHP). Methods and Results: Combined treatments of carvacrol and HHP have been studied at different temperatures, using exponentially growing cells of Listeria monocytogenes, and showed a synergistic action. The antimicrobial effects were higher at 1°C than at 8 or 20°C. Furthermore, addition of carvacrol to cells exposed to sublethal HHP treatment caused similar reductions in viable numbers as simultaneous treatment with carvacrol and HHP. Synergism was also observed between carvacrol and HHP in semi-skimmed milk that was artifcially contaminated with L. monocytogenes. Conclusions: Carvacrol and HHP act synergistically and the antimicrobial effects of the combined treatment are greater at lower temperatures. Significance and Impact of the Study: The study demonstrates the synergistic antimicrobial effect of essential oils in combination with HHP and indicates the potential of these combined treatments in food processing.
Resumo:
The combined action of the plant-derived volatile, S-carvone, and mild heat treatment on the food-borne pathogen, Listeria monocytogenes, was evaluated. The viability of exponential phase cultures grown at 8 °C could be reduced by 1·3 log units after exposure to S-carvone (5 mmol l−1) for 30 min at 45 °C, while individual treatment with S-carvone or exposure to 45 °C for 30 min did not result in a loss in viability. Other plant-derived volatiles, namely carvacrol, cinnamaldehyde, thymol and decanal, were also found to reduce the viability of L. monocytogenes in combination with the same mild heat treatment at concentrations of 1·75 mmol l−1, 2·5 mmol l−1, 1·5 mmol l−1 and 2 mmol l−1, respectively. These findings show that essential oil compounds can play an important role in minimally processed foods, and can be used in the concept of Hurdle Technology to reduce the intensity of heat treatment or other individual hurdles.
Resumo:
A new genus and species of Normanellidae (Copepoda, Harpacticoida), Paranaiara inajae gen. et sp. nov., is described from the continental shelf off the northern coast of Sao Paulo State, Brazil. The new genus differs from the type genus Normanella Brady, 1880 and Sagamiella Lee & Huys, 1999 in its presence of lamelliform caudal rami, a maxillulary endopod represented by 2 setae, an unarmed maxillipedal syncoxa, and reduced setation on P2 enp-2 (without outer spine) and P3 enp-2 (with only 2 inner setae). All these apomorphic character states are shared with the genus Pseudocletodes Scott & Scott, 1893, formerly placed in the family Nannopodidae (ex Huntemanniidae) and here assigned to the Normanellidae. Pseudocletodes can be differentiated from Paranaiara by the loss of the P1 endopod and of the inner seta on P2-P4 enp-1, the presence of only 2 inner setae on P2 enp-2 (instead of 3) and only 1 inner seta on P4 exp-3 (instead of 2), the presence of a second inner seta on P4 enp-2 (instead of 1), the morphology of the fifth pair of legs which are not medially fused and have only 3 endopodal elements (instead of 4) in the male, and the well developed caudal ramus seta V (instead of rudimentary). It is postulated that prehensility of the P1 endopod was secondarily lost in the common ancestor of Paranaiara and Pseudocletodes. An updated family diagnosis of the Normanellidae and a dichotomous identification key to the 22 currently valid species are presented.
Resumo:
The Malay Apple [Syzygium malaccense (L.) Merr. & L. M. Perry] is an option for the producer as its fruits are attractive and well accepted by the consumer. The difficulty of culture of this species is that the plant is very tall and has a long juvenile period when propagated by seed, making its vegetative propagation necessary to anticipate the productive period and decrease its size. The possibility of vegetative propagation of this species was studied by cutting, layering, and grafting. In the cutting experiment, three doses of indolbutyric acid (IBA) (0, 1,000, 3,000, and 5,000 mg L(-1)) were tested in two lengths of herbaceous cuttings (15 and 25 cm). In the layering experiment, two periods of layering (summer and autumn) and four doses of IBA (0, 1,000, 4,000, 7,000, and 10,000 mg kg(-1)) were evaluated. For grafting, the compatibility between S. malaccense and S. jambos (L.) Alston as rootstock was studied with two diameters (0.5 and 0.8 cm) and in two periods (winter and summer), by method of full graft. For cuttings, the percentage of rooting was 20%, independently of the IBA doses, except for 5,000 mg L(-1) that showed negative effect on 15 cm cuttings; layering and grafting were not successful in the studied conditions.
Resumo:
Dr. Dorothy Perry Thompson was a Winthrop professor of English and an accomplished poet and writer. As well as teaching in the English Department, Dr. Thompson also coordinated the African American Studies program which she helped found. The Dorothy Perry Thompson Papers consists of her poems and writings, drafts, research, notes, contract agreements, awards and certificates, speaking engagement flyers and records, thank you letters, and promotion and tenure records.
Resumo:
Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.
Resumo:
Scott Joplin’s (1867–1917) opera Treemonisha is the only opera in existence about the Reconstruction era African-American experience written by a black man who actually lived through it. This fact alone makes the opera a work of tremendous significance. Further, Joplin’s music is profoundly expressive and as stylistically unique as anything ever created in America. Through his score and libretto, Joplin vividly documented a culture that has left us few other artifacts: The echoes of the “field hollers,” spirituals, fiddle tunes, revival hymns, and ancient African dances of his rural childhood are all heard, along with the dialects of his people rising up from slavery. Yet for all of its obvious significance, Treemonisha has been a deeply misunderstood work. The opera was complex and virtually unprecedented, two reasons why 1910s America could not embrace it. And tragically, Joplin's original 1911 materials for the opera were almost entirely destroyed in the early 1960s. In the early 1970s several attempts were made to reconstruct it, but for the most part these were not concerned with the opera’s cultural origins or historic authenticity. But now, on the centennial of this extraordinary creation, comes this new recording of a completely authentic reconstruction of Treemonisha by Rick Benjamin, based on eighteen years of research.
Resumo:
Faciogenital dysplasia or Aarskog-Scott syndrome (AAS) is an X-linked disorder characterized by craniofacial, skeletal, and urogenital malformations and short stature. Mutations in the only known causative gene FGD1 are found in about one-fifth of the cases with the clinical diagnosis of AAS. FGD1 is a guanine nucleotide exchange factor (GEF) that specifically activates the Rho GTPase Cdc42 via its RhoGEF domain. The Cdc42 pathway is involved in skeletal formation and multiple aspects of neuronal development. We describe a boy with typical AAS and, in addition, unilateral focal polymicrogyria (PMG), a feature hitherto unreported in AAS. Sequencing of the FGD1 gene in the index case and his mother revealed the presence of a novel mutation (1396A>G; M466V), located in the evolutionary conserved alpha-helix 4 of the RhoGEF domain. M466V was not found in healthy family members, in >300 healthy controls and AAS patients, and has not been reported in the literature or mutation databases to date, indicating that this novel missense mutation causes AAS, and possibly PMG. Brain cortex malformations such as PMG could be initiated by mutations in the evolutionary conserved RhoGEF domain of FGD1, by perturbing the signaling via Rho GTPases such as Cdc42 known to cause brain malformation.
Resumo:
In Fraktur
Resumo:
Signatur des Originals: S 36/F01826