936 resultados para Perineural invasion
Resumo:
Human cathepsin L along with cathepsin S, K, and V are collectively known as cathepsin L-like proteases due to their high homology. The overexpression and aberrant activity of each of these proteases has been implicated in tumorigenesis. These proteases contain propeptide domains that can potently inhibit both their cognate protease and other proteases within the cathepsin L-like subfamily. In this investigation, we have produced the cathepsin S propeptide recombinantly and have shown that it is a potent inhibitor of the peptidolytic, elastinolytic, and gelatinolytic activities of the cathepsin L-like proteases. In addition, we show that this peptide is capable of significantly attenuating tumor cell invasion in a panel of human cancer cell lines. Furthermore, fusion of an IgG Fc-domain to the COOH terminus of the propeptide resulted in a chimeric protein with significantly enhanced ability to block tumor cell invasion. This Fc fusion protein exhibited enhanced stability in cell-based assays in comparison with the unmodified propeptide species. This approach for the combined inhibition of the cathepsin L-like proteases may prove useful for the further study in cancer and other conditions where their aberrant activity has been implicated. Furthermore, this strategy for simultaneous inhibition of multiple cysteine cathepsins may represent the basis for novel therapeutics to attenuate tumorigenesis.
Resumo:
Effective inhibitors of osteopontin (OPN)-mediated neoplastic transformation and metastasis are still lacking. (-)-Agelastatin A is a naturally occurring oroidin alkaloid with powerful antitumor effects that, in many cases, are superior to cisplatin in vitro. In this regard, past comparative assaying of the two agents against a range of human tumor cell lines has revealed that typically (-)-agelastatin A is 1.5 to 16 times more potent than cisplatin at inhibiting cell growth, its effects being most pronounced against human bladder, skin, colon, and breast carcinomas. In this study, we have investigated the effects of (-)-agelastatin A on OPN-mediated malignant transformation using mammary epithelial cell lines. Treatment with (-)-agelastatin A inhibited OPN protein expression and enhanced expression of the cellular OPN inhibitor, Tcf-4. (-)-Agelastatin A treatment also reduced beta-catenin protein expression and reduced anchorage-independent growth, adhesion, and invasion in R37 OPN pBK-CMV and C9 cell lines. Similar effects were observed in MDA-MB-231 and MDA-MB-435s human breast cancer cell lines exposed to (-)-agelastatin A. Suppression of Tcf-4 by RNA interference (short interfering RNA) induced malignant/invasive transformation in parental benign Rama 37 cells; significantly, these events were reversed by treatment with (-)-agelastatin A. Our study reveals, for the very first time, that (-)-agelastatin A down-regulates beta-catenin expression while simultaneously up-regulating Tcf-4 and that these combined effects cause repression of OPN and inhibition of OPN-mediated malignant cell invasion, adhesion, and colony formation in vitro. We have also shown that (-)-agelastatin A inhibits cancer cell proliferation by causing cells to accumulate in the G(2) phase of cell cycle.
Resumo:
Assessing the effects of invading species on native community structure is often confounded by environmental factors and weakened by lack of replicated, long-term pre- and post-invasion monitoring. Here, we uncouple the community effects of a freshwater amphipod invader from environmental differences. In Irish rivers, the introduced Gammarus pulex replaces the native Gammarus duebeni celticus. However, the River Lissan in Northern Ireland is dissected by a weir that has slowed the upstream invasion by G. pulex. This allowed us in 2000 to sample three contiguous 150-m reaches that were (1) G. pulex dominated; (2) mixed Gammarus spp.; and (3) G. duebeni celticus only. In 2003, we resampled these reaches and one additional of mixed Gammarus species and one with only G. duebeni celticus further upstream. In temperature, conductivity, and pH, there were statistically significant but no biologically relevant differences among the five reaches of 2003, and between the three reaches surveyed in both years. Although there was evidence of recovery in macroinvertebrate diversity and richness in invaded reaches between years, continued upstream invasion was associated with sustained reductions in these community metrics as compared to un-invaded sites. Community ordination indicated (1) different associations of community composition attributed to the distribution, abundance, and biomass of the invader; and (2) increasing similarity of invaded communities over time. The impact mechanisms of G. pulex on macroinvertebrate community composition may include predation and competition. The consequences of the observed community changes for ecosystem functioning require further investigation.
Resumo:
Purpose: Cathepsin S is a cysteine protease that promotes the invasion of tumor and endothelial cells during cancer progression. Here we investigated the potential to target cathepsin S using an antagonistic antibody, Fsn0503, to block these tumorigenic effects.
Experimental Design: A panel of monoclonal antibodies was raised to human cathepsin S. The effects of a selected antibody were subsequently determined using invasion and proteolysis assays. Endothelial cell tube formation and aorta sprouting assays were done to examine antiangiogenic effects. In vivo effects were also evaluated using HCT116 xenograft studies.
Results: A selected cathepsin S antibody, Fsn0503, significantly blocked invasion of a range of tumor cell lines, most significantly HCT116 colorectal carcinoma cells, through inhibition of extracellular cathepsin S–mediated proteolysis. We subsequently found enhanced expression of cathepsin S in colorectal adenocarcinoma biopsies when compared with normal colon tissue. Moreover, Fsn0503 blocked endothelial cell capillary tube formation and aortic microvascular sprouting. We further showed that administration of Fsn0503 resulted in inhibition of tumor growth and neovascularization of HCT116 xenograft tumors.
Conclusions: These results show that blocking the invasive and proangiogenic effects of cathepsin S with antibody inhibitors may have therapeutic utility upon further preclinical and clinical evaluation.
Resumo:
European hare Lepus europaeus populations have undergone recent declines but the species has successfully naturalised in many countries outside its native range. It was introduced to Ireland during the mid-late nineteenth century for field sport and is now well established in Northern Ireland. The native Irish hare Lepus timidus hibernicus is an endemic subspecies of mountain hare L. timidus and has attracted major conservation concern following a long-term population decline during the twentieth century and is one of the highest priority species for conservation action in Ireland. Little is known about the European hare in Ireland or whether it poses a significant threat to the native mountain hare subspecies by compromising its ecological security or genetic integrity. We review the invasion ecology of the European hare and examine evidence for interspecific competition with the mountain hare for habitat space and food resources, interspecific hybridisation, disease and parasite transmission and possible impacts of climate change. We also examine the impact that introduced hares can have on native non-lagomorph species. We conclude that the European hare is an emerging and significant threat to the conservation status of the native Irish hare. Invasive mammal species have been successfully eradicated from Ireland before and immediate action is often the only opportunity for cost-effective eradication. An urgent call is issued for further research whilst the need for a European hare invasive Species Action Plan (iSAP) and Eradication strategy are discussed.
Resumo:
Not all introduced (invasive) species in a region will spread from a single point of introduction. Long-distance dispersal or further introductions can obscure the pattern of spread, but the regional importance of such processes is difficult to gauge. These difficulties are further compounded when information on the multiple scale process of invasive species range expansion is reduced to one-dimensional estimates of spread (e. g. km yr(-1)). We therefore compared the results of two different metrics of range expansion: maximum linear rate of spread and accumulation of occupied grid squares (50 x 50 km) over time. An analysis of records for 54 species of introduced marine macrophytes in the Mediterranean and northeast Atlantic revealed cases where the invasion process was probably missed (e. g. Atlantic Bonnemaisonia hamifera) and suggested cases of secondary introductions or erratic jump dispersal (Dasysiphonia sp. and Womersleyella setacea). A majority of species analysed showed evidence for an accumulation of invaded sites without a clear invasion front. Estimates of spread rate are increasing for more recent introductions. The increase is greater than can be accounted for by temporally varying search effort and implies a historical increase in vector efficiency and/or a decreased resistance of native communities to invasion.
Resumo:
Gastrointestinal endocrine cell tumors are a heterogeneous population of lesions believed to arise from neuroendocrine cells of the gastrointestinal mucosa. The current classification of these tumors is based on tumor size, microscopic features and clinical evidence of metastasis. Although diagnostic categories generally correlate with prognosis, molecular prognostic markers will be clinically useful adjuncts. Cofilin has been implicated in tumor invasion, and its immunolocalisation was studied in gastrointestinal endocrine cell tumors. The immunolocalisation of cofilin was studied by immunohistochemistry in 34 formalin-fixed, paraffin wax-embedded gastrointestinal endocrine cell tumors using a tissue microarray platform. A significant correlation was found between high cofilin immunolabelling and the depth of invasion (p
Resumo:
Fibroblast activation protein-a (FAP-a) promotes tumor growth and cell invasiveness through extracellular matrix degradation. How ultraviolet radiation (UVR), the major risk factor for malignant melanoma, influences the expression of FAP-a is unknown. We examined the effect of UVR on FAP-a expression in melanocytes, keratinocytes and fibroblasts from the skin and in melanoma cells. UVR induces upregulation of FAP-a in fibroblasts, melanocytes and primary melanoma cells (PM) whereas keratinocytes and metastatic melanoma cells remained FAP-a negative. UVA and UVB stimulated FAP-a-driven migration and invasion in fibroblasts, melanocytes and PM. In co-culture systems UVR of melanocytes, PM and cells from regional metastases upregulated FAP-a in fibroblasts but only supernatants from non-irradiated PM were able to induce FAP-a in fibroblasts. Further, UV-radiated melanocytes and PM significantly increased FAP-a expression in fibroblasts through secretory crosstalk via Wnt5a, PDGF-BB and TGF-ß1. Moreover, UV radiated melanocytes and PM increased collagen I invasion and migration of fibroblasts. The FAP-a/DPPIV inhibitor Gly-ProP(OPh)2 significantly decreased this response implicating FAP-a/DPPIV as an important protein complex in cell migration and invasion. These experiments suggest a functional association between UVR and FAP-a expression in fibroblasts, melanocytes and melanoma cells implicating that UVR of malignant melanoma converts fibroblasts into FAP-a expressing and ECM degrading fibroblasts thus facilitating invasion and migration. The secretory crosstalk between melanoma and tumor surrounding fibroblasts is mediated via PDGF-BB, TGF-ß1 and Wnt5a and these factors should be evaluated as targets to reduce FAP-a activity and prevent early melanoma dissemination.