910 resultados para Performance Liquid-chromatography


Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-performance liquid chromatography coupled by an electrospray ion source to a tandem mass spectrometer (HPLC-EST-MS/ MS) is the current analytical method of choice for quantitation of analytes in biological matrices. With HPLC-ESI-MS/MS having the characteristics of high selectivity, sensitivity, and throughput, this technology is being increasingly used in the clinical laboratory. An important issue to be addressed in method development, validation, and routine use of HPLC-ESI-MS/MS is matrix effects. Matrix effects are the alteration of ionization efficiency by the presence of coeluting substances. These effects are unseen in the chromatograrn but have deleterious impact on methods accuracy and sensitivity. The two common ways to assess matrix effects are either by the postextraction addition method or the postcolumn infusion method. To remove or minimize matrix effects, modification to the sample extraction methodology and improved chromatographic separation must be performed. These two parameters are linked together and form the basis of developing a successful and robust quantitative HPLC-EST-MS/MS method. Due to the heterogenous nature of the population being studied, the variability of a method must be assessed in samples taken from a variety of subjects. In this paper, the major aspects of matrix effects are discussed with an approach to address matrix effects during method validation proposed. (c) 2004 The Canadian Society of Clinical Chemists. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report here a validated method for the quantification of a new immunosuppressant drug FTY720, using HPLC-tandem mass spectrometry. Whole blood samples (500 mu l) were subjected to liquid-liquid extraction, in the presence of an internal standard (Y-32919). Mass spectrometric detection was by selected reaction monitoring with an atmospheric pressure chemical ionization source in positive ionization mode (FTY720: m/z 308.3 -> 255.3). The assay was linear from 0.2 to 25 mu g/l (r(2) > 0.997, n = 5). The inter- and intra-day analytical recovery and imprecision for quality control samples (0.5, 7 and 15 mu g/l) were 95.8-103.2 and < 5.5%, respectively. At the lower limit of quantification (0.2 mu g/l) the interand intra-day analytical recovery was 99.0-102.8% with imprecision of < 7.6% (n = 5). The assay had a mean relative recovery of 100.5 +/- 5.8% (n = 15). Extracted samples were stable for 16 h. IFTY720 quality control samples were stable at room temperature for 16 h at 4 degrees C for at least 8 days and when taken through at least three freeze-thaw cycles. In conclusion, the method described displays analytical performance characteristics that are suitable for pharmacokinetic studies in humans. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The principles of High Performance Liquid Chromatography (HPLC) and pharmacokinetics were applied to the use of several clinically-important drugs at the East Birmingham Hospital. Amongst these was gentamicin, which was investigated over a two-year period by a multi-disciplinary team. It was found that there was considerable intra- and inter-patient variation that had not previously been reported and the causes and consequences of such variation were considered. A detailed evaluation of available pharmacokinetic techniques was undertaken and 1- and 2-compartment models were optimised with regard to sampling procedures, analytical error and model-error. The implications for control of therapy are discussed and an improved sampling regime is proposed for routine usage. Similar techniques were applied to trimethoprim, assayed by HPLC, in patients with normal renal function and investigations were also commenced into the penetration of drug into peritoneal dialysate. Novel assay techniques were also developed for a range of drugs including 4-aminopyridine, chloramphenicol, metronidazole and a series of penicillins and cephalosporins. Stability studies on cysteamine, reaction-rate studies on creatinine-picrate and structure-activity relationships in HPLC of aminopyridines are also reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Existing instrumental techniques must be adaptable to the analysis of novel explosives if science is to keep up with the practices of terrorists and criminals. The focus of this work has been the development of analytical techniques for the analysis of two types of novel explosives: ascorbic acid-based propellants, and improvised mixtures of concentrated hydrogen peroxide/fuel. In recent years, the use of these explosives in improvised explosive devices (IEDs) has increased. It is therefore important to develop methods which permit the identification of the nature of the original explosive from post-blast residues. Ascorbic acid-based propellants are low explosives which employ an ascorbic acid fuel source with a nitrate/perchlorate oxidizer. A method which utilized ion chromatography with indirect photometric detection was optimized for the analysis of intact propellants. Post-burn and post-blast residues if these propellants were analyzed. It was determined that the ascorbic acid fuel and nitrate oxidizer could be detected in intact propellants, as well as in the post-burn and post-blast residues. Degradation products of the nitrate and perchlorate oxidizers were also detected. With a quadrupole time-of-flight mass spectrometer (QToFMS), exact mass measurements are possible. When an HPLC instrument is coupled to a QToFMS, the combination of retention time with accurate mass measurements, mass spectral fragmentation information, and isotopic abundance patterns allows for the unequivocal identification of a target analyte. An optimized HPLC-ESI-QToFMS method was applied to the analysis of ascorbic acid-based propellants. Exact mass measurements were collected for the fuel and oxidizer anions, and their degradation products. Ascorbic acid was detected in the intact samples and half of the propellants subjected to open burning; the intact fuel molecule was not detected in any of the post-blast residue. Two methods were optimized for the analysis of trace levels of hydrogen peroxide: HPLC with fluorescence detection (HPLC-FD), and HPLC with electrochemical detection (HPLC-ED). Both techniques were extremely selective for hydrogen peroxide. Both methods were applied to the analysis of post-blast debris from improvised mixtures of concentrated hydrogen peroxide/fuel; hydrogen peroxide was detected on variety of substrates. Hydrogen peroxide was detected in the post-blast residues of the improvised explosives TATP and HMTD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this project was to develop a rapid separation and detection method for analyzing organic compounds in smokeless powders and then test its applicability on gunshot residue (GSR) samples. In this project, a total of 20 common smokeless powder additives and their decomposition products were separated by ultra performance liquid chromatography (UPLC) and confirmed by tandem mass spectrometry (MS/MS) using multiple reaction monitoring mode (MRM). Some of the targeted compounds included diphenylamines, centralites, nitrotoluenes, nitroglycerin, and various phthalates. The compounds were ionized in the MS source using simultaneous positive and negative electrospray ionization (ESI) with negative atmospheric pressure chemical ionization (APCI) in order to detect all compounds in a single analysis. The developed UPLC/MS/MS method was applied to commercially available smokeless powders and gunshot residue samples recovered from the hands of shooters, spent cartridges, and smokeless powder retrieved from unfired cartridges. Distinct compositions were identified for smokeless powders from different manufacturers and from separate manufacturing lots. The procedure also produced specific chemical profiles when tested on gunshot residues from different manufacturers. Overall, this thesis represents the development of a rapid and reproducible procedure capable of simultaneously detecting the widest possible range of components present in organic gunshot residue.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study measured a chemotherapy drug, etoposide, in pig cerebrospinal fluid after intraventricular administrations were made directly into the fourth ventricle of the brain; cytotoxic concentrations for a twenty-four hour period after infusions. The analytical method developed validates the potential treatment of malignant brain tumors. The increase in serum carotenoid concentration in 30 healthy individuals was measured after supplementation with lutein. HPLC analysis of serum levels of carotenoids showed an increase in the concentration of lutein and a constant concentration of other major serum carotenoids. An initial attempt to measure the enthalpy of aggregation of xanthophylls was conducted by using ultraviolet-visible spectroscopy. The enthalpy of lutein aggregation and AH range of zeaxanthin disordering of aggregation are reported. Monomethyl ether of lutein did not aggregate in any of the aqueous solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Existing instrumental techniques must be adaptable to the analysis of novel explosives if science is to keep up with the practices of terrorists and criminals. The focus of this work has been the development of analytical techniques for the analysis of two types of novel explosives: ascorbic acid-based propellants, and improvised mixtures of concentrated hydrogen peroxide/fuel. In recent years, the use of these explosives in improvised explosive devices (IEDs) has increased. It is therefore important to develop methods which permit the identification of the nature of the original explosive from post-blast residues. Ascorbic acid-based propellants are low explosives which employ an ascorbic acid fuel source with a nitrate/perchlorate oxidizer. A method which utilized ion chromatography with indirect photometric detection was optimized for the analysis of intact propellants. Post-burn and post-blast residues if these propellants were analyzed. It was determined that the ascorbic acid fuel and nitrate oxidizer could be detected in intact propellants, as well as in the post-burn and post-blast residues. Degradation products of the nitrate and perchlorate oxidizers were also detected. With a quadrupole time-of-flight mass spectrometer (QToFMS), exact mass measurements are possible. When an HPLC instrument is coupled to a QToFMS, the combination of retention time with accurate mass measurements, mass spectral fragmentation information, and isotopic abundance patterns allows for the unequivocal identification of a target analyte. An optimized HPLC-ESI-QToFMS method was applied to the analysis of ascorbic acid-based propellants. Exact mass measurements were collected for the fuel and oxidizer anions, and their degradation products. Ascorbic acid was detected in the intact samples and half of the propellants subjected to open burning; the intact fuel molecule was not detected in any of the post-blast residue. Two methods were optimized for the analysis of trace levels of hydrogen peroxide: HPLC with fluorescence detection (HPLC-FD), and HPLC with electrochemical detection (HPLC-ED). Both techniques were extremely selective for hydrogen peroxide. Both methods were applied to the analysis of post-blast debris from improvised mixtures of concentrated hydrogen peroxide/fuel; hydrogen peroxide was detected on variety of substrates. Hydrogen peroxide was detected in the post-blast residues of the improvised explosives TATP and HMTD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comprehensive forensic investigation of sensitive ecosystems in the Everglades Area is presented. Assessing the background levels of contamination in these ecosystems represents a vital resource to build up forensic evidence required to enforce future environmental crimes within the studied areas. This investigation presents the development and validation of a fractionation and isolation method for two families of herbicides commonly applied in the vicinity of the study area, including phenoxy acids like 2,4-D, MCPA, and silvex; as well as the most common triazine-based herbicides like atrazine, prometyne, simazine and related metabolites like DIA and DEA. Accelerated solvent extraction (ASE) and solid phase extraction (SPE) were used to isolate the analytes from abiotic matrices containing large amounts of organic material. Atmospheric-pressure ionization (API) with electrospray ionization in negative mode (ESP-), and Chemical Ionization in the positive mode (APCI+) were used to perform the characterization of the herbicides of interest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We quantified pigment biomarkers by high performance liquid chromatography (HPLC) to obtain a broad taxonomic classification of microphytobenthos (MPB) (i.e. identification of dominant taxa). Three replicate sediment cores were collected at 0, 50 and 100 m along transects 5-9 in Heron Reef lagoon (n=15) (Fig. 1). Transects 1-4 could not be processed because the means to have the samples analysed by HPLC were not available at the time of field data collection. Cores were stored frozen and scrapes taken from the top of each one and placed in cryovials immersed in dry ice. Samples were sent to the laboratory (CSIRO Marine and Atmospheric Research, Hobart, Australia) where pigments were extracted with 100% acetone during fifteen hours at 4°C after vortex mixing (30 seconds) and sonication (15 minutes). Samples were then centrifuged and filtered prior to the analysis of pigment composition with a Waters - Alliance HPLC system equipped with a photo-diode array detector. Pigments were separated using a Zorbax Eclipse XDB-C8 stainless steel 150 mm x 4.6 mm ID column with 3.5 µm particle size (Agilent Technologies) and a binary gradient system with an elevated column temperature following a modified version of the Van Heukelem and Thomas (2001) method. The separated pigments were detected at 436 nm and identified against standard spectra using Waters Empower software. Standards for HPLC system calibration were obtained from Sigma (USA) and DHI (Denmark).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plantaginis Semen is commonly used in traditional medicine to treat edema, hypertension, and diabetes. The commercially available Plantaginis Semen in China mainly comes from three species. To clarify the chemical composition and distinct different species of Plantaginis Semen, we established a metabolite profiling method based on ultra high performance liquid chromatography with electrospray ionization quadrupole time-of-flight tandem mass spectrometry coupled with elevated energy technique. A total of 108 compounds, including phenylethanoid glycosides, flavonoids, guanidine derivatives, terpenoids, organic acids, and fatty acids, were identified from Plantago asiatica L., P. depressa Willd., and P. major L. Results showed significant differences in chemical components among the three species, particularly flavonoids. This study is the first to provide a comprehensive chemical profile of Plantaginis Semen, which could be involved into the quality control, medication guide, and developing new drug of Plantago seeds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activated carbon was prepared from date pits via chemical activation with H3PO4. The effects of activating agent concentration and activation temperature on the yield and surface area were studied. The optimal activated carbon was prepared at 450 °C using 55 % H3PO4. The prepared activated carbon was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric-differential thermal analysis, and Brunauer, Emmett, and Teller (BET) surface area. The prepared date pit-based activated carbon (DAC) was used for the removal of bromate (BrO3 −). The concentration of BrO3 − was determined by ultra-performance liquid chromatography-mass tandem spectrometry (UPLC-MS/MS). The experimental equilibrium data for BrO3 − adsorption onto DAC was well fitted to the Langmuir isotherm model and showed maximum monolayer adsorption capacity of 25.64 mg g−1. The adsorption kinetics of BrO3 − adsorption was very well represented by the pseudo-first-order equation. The analytical application of DAC for the analysis of real water samples was studied with very promising results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To investigate the spectrum-effect relationships between high performance liquid chromatography (HPLC) fingerprints and duodenum contractility of charred areca nut (CAN) on rats. Methods: An HPLC method was used to establish the fingerprint of charred areca nut (CAN). The promoting effect on contractility of intestinal smooth was carried out to evaluate the duodenum contractility of CAN in vitro. In addition, the spectrum-effect relationships between HPLC fingerprints and bioactivities of CAN were investigated using multiple linear regression analysis (backward method). Results: Fourteen common peaks were detected and peak 3 (5-Hydroxymethyl-2-furfural, 5-HMF) was selected as the reference peak to calculate the relative retention time of 13 other common peaks. In addition, the equation of spectrum-effect relationships {Y = 3.818 - 1.126X1 + 0.817X2 - 0.045X4 - 0.504X5 + 0.728X6 - 0.056X8 + 1.122X9 - 0.247X13 - 0.978X14 (p < 0.05, R2 = 1)} was established in the present study by the multiple linear regression analysis (backward method). According to the equation, the absolute value of the coefficient before X1, X2, X4, X5, X6, X8, X9, X13, X14 was the coefficient between the component and the parameter. Conclusion: The model presented in this study successfully unraveled the spectrum-effect relationship of CAN, which provides a promising strategy for screening effective constituents of areca nut.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To study the in vivo metabolism of kurarinone, a lavandulyl flavanone which is a major constituent of Kushen and a marker compound with many biological activities, using ultra-performance liquid chromatography coupled with linear ion trap Orbitrap mass spectrometry (UPLC-LTQ-Orbitrap- MS). Methods: Six male Sprague-Dawley rats were randomly divided into two groups. First, kurarinone was suspended in 0.5 % carboxymethylcellulose sodium (CMC-Na) aqueous solution, and was given to rats (n = 3, 2 mL for each rat) orally at 50 mg/kg. A 2 mL aliquot of 0.5 % CMC-Na aqueous solution was administered to the rats in the control group. Next, urine samples were collected over 0-24 h after the oral administrations and all urine samples were pretreated by a solid phase extraction (SPE) method. Finally, all samples were analyzed by a UPLC-LTQ-Orbitrap mass spectrometry coupled with an electrospray ionization source (ESI) that was operated in the negative ionization mode. Results: A total of 11 metabolites, including the parent drug and 10 phase II metabolites in rat urine, were first detected and interpreted based on accurate mass measurement, fragment ions, and chromatographic retention times. The results were based on the assumption that kurarinone glucuronidation was the dominant metabolite that was excreted in rat urine. Conclusion: The results from this work indicate that kurarinone in vivo is typically transformed to nontoxic glucuronidation metabolites, and these findings may help to characterize the metabolic profile of kurarinone.